Economics 8107
Macroeconomic Theory
Recitation 4

Conor Ryan

February 13, 2017

Adapted From Manuel Amador’s Notes and Aiyagari (1993)

Consider the following Bellman’s equation of the income fluctuations problem:

a>—¢

v(a:)—max{ux—a +5Z v(Ra + y( ))}

where u is continuous, strictly increasing, strictly concave, and differentiable.
Define

a = a+¢

2 = x+9¢

We also have to make a transformation for y(s). Note:

Z'=Ra+y(s)+¢
— R(a—6) +y(s)+ 0
= Ra+y(s) - (R-1)¢
= Ra+y(s)

Thus, we define §(s) = y(s)—r¢. So ¢ = x—a = z—a. The Bellman’s equation becomes

S

v(z) = max {u(z —a)+p Z m(s)v(Ra + z](s))}

Claim 0.1. Let zpin = Ymin — 7¢. Then ¢, > 0 whenever z; > Zpyin.

Claim 0.2. The value function, v, is continuous, strictly increasing, strictly concave, and
differentiable.



If X is the lagrange multiplier on the borrowing constraint, then the first order condition
is

Envelope:

9e(2)

Claim 0.3. Consumption is strictly increasing in cash-in-hand, i.e. =5~ > 0.
Proof. Consider the Envelope Condition:
v(z) = u(c(2))
Jc(z)
" - "
V() = (ele)
and so P Y
o2 _ )
0z u” (c(2))
since u and v are strictly concave. O

Claim 0.4. Assume that either U'(0) < 00 0T Zmin = Ymin — r¢ > 0. Then there is a
Z > Zmin Such that for all z; < 2, ¢, = 2 and a;41 = 0.

Proof. Either of the antecedents give us that u'(z,,) is finite, which implies that v/(z,,) is
finite. Suppose for a contradiction that the borrowing constraint never binds. Then, we can
combine the first order condition and the envelope condition to get, for some z > 2,,;,.

v'(2) = u'(c(2))
= BREV' (Ra(z) + 4(s))
< BRY' (Ra(2) + Yrmin)

<V (Zmin)

If we take the limit of this inequality as z — 2., We get a contradiction. Thus, there must
be some Z > z,;, where the borrowing constraint binds. This implies that a(2) = 0. Now,
take any value for cash-in-hand, z < 2. We want to show that if z < 2, then a(z) = 0.
Suppose, by contradiction, that a(z) > a(2). From the FOCs:

(c(2)) = BREY (Ra(z) + §(s))
(c(2)) = BREV (Ra(2) +§(s))

u/
u/



But as v’ is strictly decreasing (v is strictly concave), we have

BREV (Ra(z) + y(s)) < BREV (Ra(z) + 9(s))

(s)
u(c(z)) < u(e(2))
c(z) > ¢(2)
since u' is strictly decreasing (u is strictly concave).
Since ¢(+) is strictly increasing, z > Z, which is a contradiction.
Thus, a(z) =0,Vz < Z. O

Claim 0.5. For all z > 2, d( ) > 0, and both 86(2) <1 and aa @) <1,

Proof. For z > Z, the borrowing constraint is not binding. The first-order condition is

c(z)) = BREV (Ra(z)+7(s))

" Cc\z o 2m M ad(z)
u(e(2) 257 = GRE (Ra(z) + 3(5) T
and so
o) )2
0z BR2E'U” (Ra(z ) y(s))
Finally,
c(z)+a(z) = =z
dc(z) Oa(z) .
0z oz
Since both functions are strictly increasing, 82(;) <1 and a%—(;) <1 m

Claim 0.6. If (i) BR < 1, (ii) y(s) has bounded support, and (iii) —CZ,”((C? is bounded above
for all sufficiently large c, then there exists a z* such that for all z; > 2%, 241 < 2.

We want to show that there exits z* > Z such that
Vz > 2% 20 (2) = Ra(2) + Umax < 2

where 2/ . (2) is the maximum cash-in-hand tomorrow given z today.

For z > Z, the borrowing constraint is not binding. So the Euler’s equation is

u' (c(2)) = BREW(c(z'(2)))
Eu'(c(2'(2)))

o (€ Cln(2))




Suppose that
E / /
L Ed(e((2)

e m2))

So for a sufficiently large z* > 2, Vz > 2* % ~ 1. Given that SR < 1,

u(e(2)) < v (e (znax(2)))
c(2) = c(Znax(2))
Since ¢(-) is increasing in z,
22 Znax(2)
So we need the condition that
Eu'(c(2(2)))

Since 2/ .. (2) > 2'(2) > 2},.(2),
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Recall that a (2] ,.(2)) > a(z,;.(2)). So
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So

Eu(c(7(2)) _ o (c(Zamel2)) — A)
LS @) = W (e (hnl(2)

Thus, we need a utility function where

/ J—
tim €=
c—00 U/(C)
Power (CRRA) will do: u = 01:;1 since
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Claim 0.7. Under the conditions we have given so far, there exists a unique invariant
distribution and it is stable.

Proof. Theorem 12.12 of SLP states: If a transition function P is monotone, has the Feller
property and satisfies a “mixing condition,” then there is a unique stable invariant distribu-
tion.

The relative markov process P, in this context, is given by

zep1 = Ra(z) +y(s) —re

One statement of the transition function being monotone is that for two probability measures
A, o where p first order stochastic dominates A, then 7%u dominates T*A. This is simply
stating that if a higher value of z if more likely in time ¢, than it will still be more likely in
time ¢ + 1. This is guaranteed in our environment since @ is increasing in z. Another way to
see this is to consider any increasing function g,

Elg(241)]2] = Elg(Ra(z) + y(s) — 1¢)|z]

which demonstrates that E[g(z:y1)|z] is an increasing function of z.

The Feller Property states that any continuous function integrated across the transition
function must remain continuous. This implies that E[g(z,.1)|2;] must be continuous in z;,
which is a result of the continuity of a.

The mixing condition is that there exists some z € [Zpmin, Zmaz), € > 0, and T' > 1 such that
Prob{zr € [z, Zmaz)|20 = Zmin} = € and Prob{zr € [zmin, 2]|20 = Zmaz} = €. This property
results from the observation that the unique fixed point of cash-in-hand as a function of ¥y,
is Znin and that any fixed point for y,,,, must exceed z,i,.

For the first point, note that 2 > z,,;,, which we already proved. This implies that for any
2 <z

= Zmin

This proves there is a fixed point at z,,;,. And since, 2'(Z|Ymin) = Zmin and
cannot be another fixed point.

a‘g(z) < 1, there

z

Consider any fixed point,z, for ¥,,qz-

z = R&(Z) + Ymaz — fr¢

> Zmin



The mixing condition is then simply established by showing that there exists a sequence of
shocks that can take an agent from the z,,;, to the lowest fixed point for y,,., and vice-versa.
There is a more rigorous and general proof in Brock and Mirman (1972), but the technical
machinery isn’t necessary here.
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