Economics 8107 Macroeconomic Theory Recitation 4

Conor Ryan

February 13, 2017

Adapted From Manuel Amador's Notes and Aiyagari (1993)

Consider the following Bellman's equation of the income fluctuations problem:

$$v(x) = \max_{a \ge -\phi} \left\{ u(x-a) + \beta \sum_{s} \pi(s) v(Ra + y(s)) \right\}$$

where u is continuous, strictly increasing, strictly concave, and differentiable. Define

$$\hat{a} = a + \phi \\ z = x + \phi$$

We also have to make a transformation for y(s). Note:

$$z' = Ra + y(s) + \phi$$

= $R(\hat{a} - \phi) + y(s) + \phi$
= $R\hat{a} + y(s) - (R - 1)\phi$
= $R\hat{a} + \tilde{y}(s)$

Thus, we define $\tilde{y}(s) = y(s) - r\phi$. So $c = x - a = z - \hat{a}$. The Bellman's equation becomes

$$v(z) = \max_{\hat{a} \ge 0} \left\{ u(z - \hat{a}) + \beta \sum_{s} \pi(s) v(R\hat{a} + \tilde{y}(s)) \right\}$$

Claim 0.1. Let $z_{min} \equiv y_{min} - r\phi$. Then $c_t > 0$ whenever $z_t > z_{min}$.

Claim 0.2. The value function, v, is continuous, strictly increasing, strictly concave, and differentiable.

If λ is the lagrange multiplier on the borrowing constraint, then the first order condition is

$$u'(c(z)) = \beta R \mathbb{E}v' \left(R\hat{a}(z) + \tilde{y}(s) \right) + \lambda$$
$$u'(c(z)) \ge \beta R \mathbb{E}v' \left(R\hat{a}(z) + \tilde{y}(s) \right)$$

Envelope:

$$v'(z) = u'(c(z))$$

Claim 0.3. Consumption is strictly increasing in cash-in-hand, i.e. $\frac{\partial c(z)}{\partial z} > 0$.

Proof. Consider the Envelope Condition:

$$v'(z) = u'(c(z))$$

$$v''(z) = u''(c(z)) \frac{\partial c(z)}{\partial z}$$

and so

$$\frac{\partial c(z)}{\partial z} = \frac{v''(z)}{u''(c(z))} > 0$$

since u and v are strictly concave.

Claim 0.4. Assume that either $U'(0) < \infty$ or $z_{min} = y_{min} - r\phi > 0$. Then there is a $\hat{z} > z_{min}$ such that for all $z_t \leq \hat{z}$, $c_t = z_t$ and $\hat{a}_{t+1} = 0$.

Proof. Either of the antecedents give us that $u'(z_{min})$ is finite, which implies that $v'(z_{min})$ is finite. Suppose for a contradiction that the borrowing constraint never binds. Then, we can combine the first order condition and the envelope condition to get, for some $z > z_{min}$.

$$v'(z) = u'(c(z))$$

= $\beta R \mathbb{E} v' \left(R \hat{a}(z) + \tilde{y}(s) \right)$
 $\leq \beta R v' \left(R \hat{a}(z) + \tilde{y}_{min} \right)$
 $< v'(z_{min})$

If we take the limit of this inequality as $z \to z_{min}$, we get a contradiction. Thus, there must be some $\hat{z} > z_{min}$ where the borrowing constraint binds. This implies that $\hat{a}(\hat{z}) = 0$. Now, take any value for cash-in-hand, $z \leq \hat{z}$. We want to show that if $z < \hat{z}$, then $\hat{a}(z) = 0$. Suppose, by contradiction, that $\hat{a}(z) > \hat{a}(\hat{z})$. From the FOCs:

$$u'(c(z)) = \beta R \mathbb{E}v' \left(R\hat{a}(z) + \tilde{y}(s) \right)$$

$$u'(c(\hat{z})) \geq \beta R \mathbb{E}v' \left(R\hat{a}(\hat{z}) + \tilde{y}(s) \right)$$

But as v' is strictly decreasing (v is strictly concave), we have

$$\begin{array}{lll} \beta R \mathbb{E} v' \left(R \hat{a}(z) + \tilde{y}(s) \right) &< & \beta R \mathbb{E} v' \left(R \hat{a}(\hat{z}) + \tilde{y}(s) \right) \\ & u'(c(z)) &< & u'(c(\hat{z})) \\ & c(z) &> & c(\hat{z}) \end{array}$$

since u' is strictly decreasing (u is strictly concave).

Since $c(\cdot)$ is strictly increasing, $z > \hat{z}$, which is a contradiction.

Thus, $\hat{a}(z) = 0, \forall z \leq \hat{z}$.

Claim 0.5. For all $z > \hat{z}$, $\frac{\partial \hat{a}(z)}{\partial z} > 0$, and both $\frac{\partial c(z)}{\partial z} \le 1$ and $\frac{\partial \hat{a}(z)}{\partial z} \le 1$.

Proof. For $z > \hat{z}$, the borrowing constraint is not binding. The first-order condition is

$$u'(c(z)) = \beta R \mathbb{E}v' \left(R\hat{a}(z) + \tilde{y}(s)\right)$$
$$u''(c(z)) \frac{\partial c(z)}{\partial z} = \beta R^2 \mathbb{E}v'' \left(R\hat{a}(z) + \tilde{y}(s)\right) \frac{\partial \hat{a}(z)}{\partial z}$$

and so

$$\frac{\partial \hat{a}(z)}{\partial z} = \frac{u''\left(c(z)\right)\frac{\partial c(z)}{\partial z}}{\beta R^2 \mathbb{E} v''\left(R\hat{a}(z) + \tilde{y}(s)\right)} > 0$$

Finally,

$$c(z) + \hat{a}(z) = z$$

$$\frac{\partial c(z)}{\partial z} + \frac{\partial \hat{a}(z)}{\partial z} = 1$$

Since both functions are strictly increasing, $\frac{\partial c(z)}{\partial z} \leq 1$ and $\frac{\partial \hat{a}(z)}{\partial z} \leq 1$.

Claim 0.6. If (i) $\beta R < 1$, (ii) y(s) has bounded support, and (iii) $-\frac{cu''(c)}{u'(c)}$ is bounded above for all sufficiently large c, then there exists a z^* such that for all $z_t \ge z^*$, $z_{t+1} \le z_t$.

We want to show that there exits $z^* > \hat{z}$ such that

$$\forall z \ge z^*, z'_{\max}(z) \equiv R\hat{a}(z) + \tilde{y}_{\max} \le z$$

where $z'_{\max}(z)$ is the maximum cash-in-hand tomorrow given z today. For $z > \hat{z}$, the borrowing constraint is not binding. So the Euler's equation is

$$u'(c(z)) = \beta R \mathbb{E} u'(c(z'(z))) u'(c(z)) = \beta R \frac{\mathbb{E} u'(c(z'(z)))}{u'(c(z'_{\max}(z)))} u'(c(z'_{\max}(z)))$$

Suppose that

$$\lim_{z \to \infty} \frac{\mathbb{E}u'(c(z'(z)))}{u'(c(z'_{\max}(z)))} = 1$$

So for a sufficiently large $z^* > \hat{z}, \forall z \ge z^*, \frac{\mathbb{E}u'(c(z'(z)))}{u'(c(z'_{\max}(z)))} \approx 1$. Given that $\beta R < 1$,

$$\begin{array}{rcl} u'(c(z)) &\leq & u'\left(c\left(z'_{\max}(z)\right)\right) \\ c(z) &\geq & c\left(z'_{\max}(z)\right) \end{array}$$

Since $c(\cdot)$ is increasing in z,

$$z \ge z'_{\max}(z)$$

So we need the condition that

$$\lim_{z \to \infty} \frac{\mathbb{E}u'(c(z'(z)))}{u'(c(z'_{\max}(z)))} = 1$$

Since $z'_{\max}(z) \ge z'(z) \ge z'_{\min}(z)$,

$$1 \le \frac{\mathbb{E}u'(c(z'(z)))}{u'(c(z'_{\max}(z)))} \le \frac{u'(c(z'_{\min}(z)))}{u'(c(z'_{\max}(z)))}$$

Recall that $\hat{a}(z'_{\max}(z)) \ge \hat{a}(z'_{\min}(z))$. So

$$\begin{array}{rcl} z'_{\max}(z) - c \left(z'_{\max}(z) \right) & \geq & z'_{\min}(z) - c \left(z'_{\min}(z) \right) \\ & c \left(z'_{\min}(z) \right) & \geq & z'_{\min}(z) - z'_{\max}(z) + c \left(z'_{\max}(z) \right) \\ & c \left(z'_{\min}(z) \right) & \geq & \tilde{y}_{\min} - \tilde{y}_{\max} + c \left(z'_{\max}(z) \right) \\ & c \left(z'_{\min}(z) \right) & \geq & -\Delta + c \left(z'_{\max}(z) \right) \end{array}$$

 So

$$1 \le \frac{\mathbb{E}u'(c(z'(z)))}{u'(c(z'_{\max}(z)))} \le \frac{u'(c(z'_{\max}(z)) - \Delta)}{u'(c(z'_{\max}(z)))}$$

Thus, we need a utility function where

$$\lim_{c \to \infty} \frac{u'(c-A)}{u'(c)} = 1$$

Power (CRRA) will do: $u = \frac{c^{1-\sigma}-1}{1-\sigma}$ since

$$\frac{(c-A)^{-\sigma}}{c^{-\sigma}} = \left[1 - \frac{A}{c}\right]^{-\sigma} \to 1 \text{ as } c \to \infty$$

Claim 0.7. Under the conditions we have given so far, there exists a unique invariant distribution and it is stable.

Proof. Theorem 12.12 of SLP states: If a transition function P is monotone, has the Feller property and satisfies a "mixing condition," then there is a unique stable invariant distribution.

The relative markov process P, in this context, is given by

$$z_{t+1} = R\hat{a}(z_t) + y(s) - r\phi$$

One statement of the transition function being monotone is that for two probability measures λ, μ where μ first order stochastic dominates λ , then $T^*\mu$ dominates $T^*\lambda$. This is simply stating that if a higher value of z if more likely in time t, than it will still be more likely in time t + 1. This is guaranteed in our environment since \hat{a} is increasing in z. Another way to see this is to consider any increasing function g,

$$E[g(z_{t+1})|z_t] = E[g(R\hat{a}(z_t) + y(s) - r\phi)|z_t]$$

which demonstrates that $E[g(z_{t+1})|z_t]$ is an increasing function of z_t .

The Feller Property states that any continuous function integrated across the transition function must remain continuous. This implies that $E[g(z_{t+1})|z_t]$ must be continuous in z_t , which is a result of the continuity of \hat{a} .

The mixing condition is that there exists some $z \in [z_{min}, z_{max}]$, $\epsilon > 0$, and $T \ge 1$ such that $Prob\{z_T \in [z, z_{max}] | z_0 = z_{min}\} \ge \epsilon$ and $Prob\{z_T \in [z_{min}, z] | z_0 = z_{max}\} \ge \epsilon$. This property results from the observation that the unique fixed point of cash-in-hand as a function of y_{min} is z_{min} and that any fixed point for y_{max} must exceed z_{min} .

For the first point, note that $\hat{z} > z_{min}$, which we already proved. This implies that for any $z \leq \hat{z}$

$$z'(z|y_{min}) = R0 + y_{min} - r\phi$$
$$= z_{min}$$

This proves there is a fixed point at z_{min} . And since, $z'(\hat{z}|y_{min}) = z_{min}$ and $\frac{\partial \hat{a}(z)}{\partial z} \leq 1$, there cannot be another fixed point.

Consider any fixed point, z, for y_{max} .

$$z = R\hat{a}(z) + y_{max} - r\phi$$

= $R\hat{a}(z) + y_{max} - y_{min} + z_{min}$
> z_{min}

The mixing condition is then simply established by showing that there exists a sequence of shocks that can take an agent from the z_{min} to the lowest fixed point for y_{max} and vice-versa. There is a more rigorous and general proof in Brock and Mirman (1972), but the technical machinery isn't necessary here.