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Consider the following Bellman’s equation of the income fluctuations problem:

v(x) = max
a≥−φ

{
u(x− a) + β

∑
s

π(s)v(Ra+ y(s))

}

where u is continuous, strictly increasing, strictly concave, and differentiable.

Define

â = a+ φ

z = x+ φ

We also have to make a transformation for y(s). Note:

z′ = Ra+ y(s) + φ

= R(â− φ) + y(s) + φ

= Râ+ y(s)− (R− 1)φ

= Râ+ ỹ(s)

Thus, we define ỹ(s) = y(s)−rφ. So c = x−a = z−â. The Bellman’s equation becomes

v(z) = max
â≥0

{
u(z − â) + β

∑
s

π(s)v(Râ+ ỹ(s))

}
Claim 0.1. Let zmin ≡ ymin − rφ. Then ct > 0 whenever zt > zmin.

Claim 0.2. The value function, v, is continuous, strictly increasing, strictly concave, and
differentiable.
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If λ is the lagrange multiplier on the borrowing constraint, then the first order condition
is

u′(c(z)) = βREv′ (Râ(z) + ỹ(s)) + λ

u′(c(z)) ≥ βREv′ (Râ(z) + ỹ(s))

Envelope:
v′(z) = u′(c(z))

Claim 0.3. Consumption is strictly increasing in cash-in-hand, i.e. ∂c(z)
∂z

> 0.

Proof. Consider the Envelope Condition:

v′(z) = u′ (c(z))

v′′(z) = u′′ (c(z))
∂c(z)

∂z

and so
∂c(z)

∂z
=

v′′(z)

u′′ (c(z))
> 0

since u and v are strictly concave.

Claim 0.4. Assume that either U ′(0) < ∞ or zmin = ymin − rφ > 0. Then there is a
ẑ > zmin such that for all zt ≤ ẑ, ct = zt and ât+1 = 0.

Proof. Either of the antecedents give us that u′(zmin) is finite, which implies that v′(zmin) is
finite. Suppose for a contradiction that the borrowing constraint never binds. Then, we can
combine the first order condition and the envelope condition to get, for some z > zmin.

v′(z) = u′(c(z))

= βREv′ (Râ(z) + ỹ(s))

≤ βRv′ (Râ(z) + ỹmin)

< v′ (zmin)

If we take the limit of this inequality as z → zmin, we get a contradiction. Thus, there must
be some ẑ > zmin where the borrowing constraint binds. This implies that â(ẑ) = 0. Now,
take any value for cash-in-hand, z ≤ ẑ. We want to show that if z < ẑ, then â(z) = 0.
Suppose, by contradiction, that â(z) > â(ẑ). From the FOCs:

u′(c(z)) = βREv′ (Râ(z) + ỹ(s))

u′(c(ẑ)) ≥ βREv′ (Râ(ẑ) + ỹ(s))
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But as v′ is strictly decreasing (v is strictly concave), we have

βREv′ (Râ(z) + ỹ(s)) < βREv′ (Râ(ẑ) + ỹ(s))

u′(c(z)) < u′(c(ẑ))

c(z) > c(ẑ)

since u′ is strictly decreasing (u is strictly concave).

Since c(·) is strictly increasing, z > ẑ, which is a contradiction.

Thus, â(z) = 0,∀z ≤ ẑ.

Claim 0.5. For all z > ẑ, ∂â(z)
∂z

> 0, and both ∂c(z)
∂z
≤ 1 and ∂â(z)

∂z
≤ 1.

Proof. For z > ẑ, the borrowing constraint is not binding. The first-order condition is

u′(c(z)) = βREv′ (Râ(z) + ỹ(s))

u′′ (c(z))
∂c(z)

∂z
= βR2Ev′′ (Râ(z) + ỹ(s))

∂â(z)

∂z

and so
∂â(z)

∂z
=

u′′ (c(z)) ∂c(z)
∂z

βR2Ev′′ (Râ(z) + ỹ(s))
> 0

Finally,

c(z) + â(z) = z

∂c(z)

∂z
+
∂â(z)

∂z
= 1

Since both functions are strictly increasing, ∂c(z)
∂z
≤ 1 and ∂â(z)

∂z
≤ 1.

Claim 0.6. If (i) βR < 1, (ii) y(s) has bounded support, and (iii) − cu′′(c)
u′(c)

is bounded above
for all sufficiently large c, then there exists a z∗ such that for all zt ≥ z∗, zt+1 ≤ zt.

We want to show that there exits z∗ > ẑ such that

∀z ≥ z∗, z′max(z) ≡ Râ(z) + ỹmax ≤ z

where z′max(z) is the maximum cash-in-hand tomorrow given z today.

For z > ẑ, the borrowing constraint is not binding. So the Euler’s equation is

u′ (c(z)) = βREu′(c(z′(z)))

u′ (c(z)) = βR
Eu′(c(z′(z)))

u′ (c (z′max(z)))
u′ (c (z′max(z)))
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Suppose that

lim
z→∞

Eu′(c(z′(z)))

u′ (c (z′max(z)))
= 1

So for a sufficiently large z∗ > ẑ, ∀z ≥ z∗, Eu′(c(z′(z)))
u′(c(z′max(z)))

≈ 1 . Given that βR < 1,

u′(c(z)) ≤ u′ (c (z′max(z)))

c(z) ≥ c (z′max(z))

Since c(·) is increasing in z,
z ≥ z′max(z)

So we need the condition that

lim
z→∞

Eu′(c(z′(z)))

u′ (c (z′max(z)))
= 1

Since z′max(z) ≥ z′(z) ≥ z′min(z),

1 ≤ Eu′(c(z′(z)))

u′ (c (z′max(z)))
≤ u′ (c (z′min(z)))

u′ (c (z′max(z)))

Recall that â (z′max(z)) ≥ â (z′min(z)). So

z′max(z)− c (z′max(z)) ≥ z′min(z)− c (z′min(z))

c (z′min(z)) ≥ z′min(z)− z′max(z) + c (z′max(z))

c (z′min(z)) ≥ ỹmin − ỹmax + c (z′max(z))

c (z′min(z)) ≥ −∆ + c (z′max(z))

So

1 ≤ Eu′(c(z′(z)))

u′ (c (z′max(z)))
≤ u′ (c (z′max(z))−∆)

u′ (c (z′max(z)))

Thus, we need a utility function where

lim
c→∞

u′(c− A)

u′(c)
= 1

Power (CRRA) will do: u = c1−σ−1
1−σ since

(c− A)−σ

c−σ
=

[
1− A

c

]−σ
→ 1 as c→∞
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Claim 0.7. Under the conditions we have given so far, there exists a unique invariant
distribution and it is stable.

Proof. Theorem 12.12 of SLP states: If a transition function P is monotone, has the Feller
property and satisfies a “mixing condition,” then there is a unique stable invariant distribu-
tion.

The relative markov process P , in this context, is given by

zt+1 = Râ(zt) + y(s)− rφ

One statement of the transition function being monotone is that for two probability measures
λ, µ where µ first order stochastic dominates λ, then T ∗µ dominates T ∗λ. This is simply
stating that if a higher value of z if more likely in time t, than it will still be more likely in
time t+ 1. This is guaranteed in our environment since â is increasing in z. Another way to
see this is to consider any increasing function g,

E[g(zt+1)|zt] = E[g(Râ(zt) + y(s)− rφ)|zt]

which demonstrates that E[g(zt+1)|zt] is an increasing function of zt.

The Feller Property states that any continuous function integrated across the transition
function must remain continuous. This implies that E[g(zt+1)|zt] must be continuous in zt,
which is a result of the continuity of â.

The mixing condition is that there exists some z ∈ [zmin, zmax], ε > 0, and T ≥ 1 such that
Prob{zT ∈ [z, zmax]|z0 = zmin} ≥ ε and Prob{zT ∈ [zmin, z]|z0 = zmax} ≥ ε. This property
results from the observation that the unique fixed point of cash-in-hand as a function of ymin
is zmin and that any fixed point for ymax must exceed zmin.

For the first point, note that ẑ > zmin, which we already proved. This implies that for any
z ≤ ẑ

z′(z|ymin) = R0 + ymin − rφ
= zmin

This proves there is a fixed point at zmin. And since, z′(ẑ|ymin) = zmin and ∂â(z)
∂z
≤ 1, there

cannot be another fixed point.

Consider any fixed point,z, for ymax.

z = Râ(z) + ymax − rφ
= Râ(z) + ymax − ymin + zmin

> zmin
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The mixing condition is then simply established by showing that there exists a sequence of
shocks that can take an agent from the zmin to the lowest fixed point for ymax and vice-versa.
There is a more rigorous and general proof in Brock and Mirman (1972), but the technical
machinery isn’t necessary here.
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