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1 CARA Utility and Aggregate Shocks

Today we are going to talk about an environment with constant absolute risk aversion and
aggregate shocks. It is an endowment economy, so we only have to worry about the consumer
problems and the market clearing conditions. The consumer problem is

V (xi, s) = max
a
−1

γ
e−γ(x

i−a) + βE[V (x′, s′)|s]

s.t. x′ = Ra+ yi(s′)

The endowment process yi(s) is characterized by an idiosyncratic and aggregate shock.

yi(s) = wi(s) + y(s)

y(s′) = φ1y(s) + (1− φ1)ȳ + ε(s′)

wi(s′) = φ2w
i(s) + ηi(s′)

ηi(s) ∼ N(0, σ2
η)

ε(s) ∼ N(0, σ2
ε )

Note that the innovation shocks are iid. The market clearing conditions are
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ˆ
c(xi, s)di =

ˆ
yi(s)di

ˆ
a(xi, s)di = 0

ˆ
xidi =

ˆ
yi(s)di

We will assume that R is constant and solve the consumer’s problem as in class using guess
and verify. As always, we have to make sure we pick the right guess. The typical guess for
CARA utility is a value function that is log-linear in total cash in hand. However, in this
environment we have persistent shocks, and we have to take into account that the agent can
use the current state to predict future income. Therefore, our guess will be

V (x, s) = − R

γ(R− 1)
e
−γ

[
Ax+By(s)+Dwi(s)+F

]

Note that we still define x = Ra+y(s)+wi(s). So why do we include the endowment process
terms twice in the value function? The terms outside of x reflect the information conveyed
to the agent about future income. If the processes were i.i.d, these terms would be 0. From
the envelope condition, we find that this implies a linear rule for consumption and, in turn,
asset savings.

Vx(x, s) = u′(c(x, s))

A
R

(R− 1)
e
−γ

[
Ax+By(s)+Dwi(s)+F

]
= e−γc(x,s)

e
−γ

[
Ax+By(s)+Dwi(s)+F

]
+logA R

(R−1)

= e−γc(x,s)

Ax+By(s) +Dwi(s) + F − 1

γ
logA

R

(R− 1)
= c(x, s)

Since c = x− a, this implies

a(x, s) = (1− A)x−By(s)−Dwi(s)− F +
1

γ
logA

R

(R− 1)

If we plug all of these equations back into the function equation, we find that A = R−1
R

.

V (xi, s) = −1

γ
e−γ(c(x,s)) + βE[V (Ra(x, s) + yi(s′), s′)|s]
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− R

γ(R− 1)
e
−γ

[
Ax+By(s)+Dwi(s)+F

]
= −1

γ
e−γ(Ax+By(s)+Dw

i(s)+F− 1
γ
logA R

(R−1)
)

+βE[− R

γ(R− 1)
e
−γ

[
A(R((1−A)x−By(s)−Dwi(s)−F+ 1

γ
logA R

(R−1)
)+yi(s′))+By(s′)+Dwi(s′)+F

]
|s]

− R

γ(R− 1)
e
−γ

[
Ax+By(s)+Dwi(s)+F

]
= − AR

γ(R− 1)
e−γ(Ax+By(s)+Dw

i(s)+F )

−β R

γ(R− 1)
e−γA(1−A)RxE[e

−γ

[
A(−RBy(s)−RDwi(s)−RF+ 1

γ
logA R

(R−1)
+yi(s′))+By(s′)+Dwi(s′)+F

]
|s]

Since this must hold for every x, we can collect the x terms and find that

A(1− A)R− A = 0

(1− A)R = 1

1− A =
1

R

A = 1− 1

R

A =
R− 1

R

Note that, in this case, logA R
(R−1) = 0. Thus, our policy functions are

a(x, s) = (1− R− 1

R
)x−By(s)−Dwi(s)− F

c(x, s) =
R− 1

R
x+By(s) +Dwi(s) + F

We can use the policy function, and or solution for A to better characterize next periods
cash.

x′ = Ra(x, s) + yi(s′)

x′ = R[x− c(x, s)] + yi(s)

x′ = x(R−RR− 1

R
)−RBy(s)−RDwi(s)−RF + yi(s′)

x′ = x−RBy(s)−RDwi(s)−RF + yi(s′)
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Then, we have

V (x′, s′) = − R

γ(R− 1)
exp{−γ

[
R− 1

R

(
x−RBy(s)−RDwi(s)−RF + yi(s′)

)
+By(s′) +Dwi(s′) + F

]
}

Vx(x
′, s′) = exp{−γ

[
R− 1

R

(
x−RBy(s)−RDwi(s)−RF + yi(s′)

)
+By(s′) +Dwi(s′) + F

]
}

From the Euler Equation, we can solve for the remaining parameters.

u′(c(x, s)) = βRE[Vx(x
′, s′)|s]

exp{−γ
(R− 1

R
x+By(s) +Dwi(s) + F

)
} =

elog βRE[exp{−γ
[
R− 1

R

(
x−RBy(s)−RDwi(s)−RF + yi(s′)

)
+By(s′) +Dwi(s′) + F

]
}|s]

We can simplify terms, since the x and F appear on both sides, and are not affected by
s′,

exp{−γ
(
By(s) +Dwi(s)

)
} =

elog βRE[exp{−γ
[
(1−R)

(
By(s) +Dwi(s) + F

)
+
R− 1

R
yi(s′) +By(s′) +Dwi(s′)

]
}|s]

exp{−γ
(
RBy(s) +RDwi(s) + (R− 1)F

)
− log βR} =

E[exp{−γ
[
R− 1

R
(y(s′) + wi(s′)) +By(s′) +Dwi(s′)

]
}|s]

exp{−γ
(
RBy(s) +RDwi(s) + (R− 1)F

)
− log βR} =

E[exp{−γ
[
(
R− 1

R
+B)y(s′) + (

R− 1

R
+D)wi(s′)

]
}|s]

exp{−γ
(
RBy(s) +RDwi(s) + (R− 1)F

)
− log βR} =

E[exp{−γ
[
(
R− 1

R
+B)(φ1y(s) + (1− φ1)ȳ + ε(s′)) + (

R− 1

R
+D)(φ2w

i(s) + ηi(s))

]
}|s]

exp{−γ
(
RBy(s) +RDwi(s) + (R− 1)F

)
− log βR} =

exp{−γ
[
(
R− 1

R
+B)(φ1y(s) + (1− φ1)ȳ) + (

R− 1

R
+D)(φ2w

i(s))

]
}

E[exp{−γ
[
(
R− 1

R
+B)ε(s′) + (

R− 1

R
+D)ηi(s′)

]
}|s]
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exp{−γ
(
RBy(s) +RDwi(s) + (R− 1)F

)
− log βR} =

exp{−γ
[
(
R− 1

R
+B)(φ1y(s) + (1− φ1)ȳ) + (

R− 1

R
+D)(φ2w

i(s))

]
+
[
γ(
R− 1

R
+B)

]2σ2
ε

2
+
[
γ(
R− 1

R
+D)

]2σ2
η

2
}

Not the y(s) and wi(s) terms on each side of the equation. Since these must be equal for all
s, it follows that

RB = (
R− 1

R
+B)φ1

B =
R− 1

R− φ1

φ1

R

D =
R− 1

R− φ2

φ2

R

We should take a moment to see how these parameters fit with our expectations. Suppose
the shocks are iid, then there is no persistent component and φ1 = φ2 = 0. In this case, both
of the shocks drop out. Suppose the shocks are instead a random walk, then φ1 = φ2 = 1.
In this case, B and D are both equal to 1

R
, which reflects that the expected future income

from this components is simply equal to the income the agent received from each shock
today.

The remaining terms will be grouped into F.

−γ(R− 1)F = log βR− γ
[
(
R− 1

R
+B)(1− φ1)ȳ

]
+
[
γ(
R− 1

R
+B)

]2σ2
ε

2
+
[
γ(
R− 1

R
+D)

]2σ2
η

2

(R− 1)F = −1

γ
log βR +

[
(
R− 1

R− φ1

)(1− φ1)ȳ
]
− 1

γ

[
γ(

R− 1

R− φ1

)
]2σ2

ε

2
− 1

γ

[
γ(

R− 1

R− φ2

)
]2σ2

η

2

F = − log βR

γ(R− 1)
+

1− φ1

R− φ1

ȳ − γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

We can now fully specify the consumption function as

c(x, s) =
R− 1

R
x+

R− 1

R− φ1

φ1

R
y(s) +

R− 1

R− φ1

φ2

R
wi(s)− log βR

γ(R− 1)

+
1− φ1

R− φ1

ȳ − γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

Can we characterize something about equilibrium? Let’s assume that the initial idiosyncratic
shock is 0 for every agent, i.e. wi−1 = 0. This is operationally equivalent to assuming that
the initial shocks are mean 0. We could find a similar result if we looked for the limiting
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distribution of the AR processes. As such, if the initial shock is 0, the idiosyncratic shocks
will be mean 0 for every period following.

ˆ
wi0 = φ2

ˆ
wi−1di+

ˆ
ηi0di = 0

ˆ
wit = φ2

ˆ
wit−1di+

ˆ
ηitdi = 0

Then, the mean of total endowment process across all individuals is aggregate endowment
level, the shock common to all agents.

ˆ
yi(s)di =

ˆ
y(s)di+

ˆ
wi(s)di = y(s)

We can use the market clearing conditions to try to characterize the equilibrium interest
rate.

y(s) =

ˆ
yi(s)di =

ˆ
c(xi, s)di

y(s) =
R− 1

R

ˆ
xidi+

R− 1

R− φ1

φ1

R
y(s) +

R− 1

R− φ1

φ2

R

ˆ
wi(s)di− log βR

γ(R− 1)

+
1− φ1

R− φ1

ȳ − γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

y(s) =
R− 1

R
y(s) +

R− 1

R− φ1

φ1

R
y(s)− log βR

γ(R− 1)
+

1− φ1

R− φ1

ȳ − γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

y(s)
[
1− R− 1

R
(1 +

φ1

R− φ1

)
]

= − log βR

γ(R− 1)
+

1− φ1

R− φ1

ȳ − γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

A slight tangent...

1− R− 1

R
(1 +

φ1

R− φ1

) =
1

R

[
R−R + 1− (R− 1)

φ1

R− φ1

]
=

1

R(R− φ1)

[
R− φ1 − φ1R + φ1

]
=

1

R(R− φ1)

[
R(1− φ1)

]
=

1− φ1

R− φ1
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And we’re back...

y(s)
1− φ1

R− φ1

= − log βR

γ(R− 1)
+

1− φ1

R− φ1

ȳ − γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

1− φ1

R− φ1

(y(s)− ȳ) = − log βR

γ(R− 1)
− γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

Alas, there can be no interest rate that satisfies this equation for all states. The interest in
this equation is going to depend on the level of the aggregate endowment today. If φ1 = 1,
then the state-variant term drops out. In this case, the aggregate shock is a random walk.
Then we have, similar to the problem in class,

log βR

γ(R− 1)
= −γ R− 1

(R− φ1)2
σ2
ε

2
− γ R− 1

(R− φ2)2
σ2
η

2

log βR = −γσ
2
ε

2
− γ(

R− 1

R− φ2

)2
σ2
η

2

The left-hand-side is strictly increasing in R, and the right hand side is strictly decreasing
in R, which means we will have a unique solution R∗ that clears our markets. Note that
solving this equation is equivalent to solving that the constant F , which represents the drift,
must be 0. We can see a similar result as we saw in class, than cash in hand will spread out.
The consumption policy is

c(x, s) =
R− 1

R
x+

1

R
y(s) +

R− 1

R− φ1

φ2

R
wi(s)

Recall that the next period cash in hands can be expressed as

x′(x, s, s′) = x−RBy(s)−RDwi(s)−RF + yi(s′)

x′(x, s, s′) = x− y(s)−R R− 1

R− φ2

φ2

R
wi(s) + y(s′) + wi(s′)

x′(x, s, s′)− y(s′) = x− y(s)− φ2(R− 1)

R− φ2

wi(s) + wi(s′)

x′(x, s, s′)− y(s′) = x− y(s)− φ2(R− 1)

R− φ2

wi(s) + φ2w
i(s) + ηi(s′)

x′(x, s, s′)− y(s′) = x− y(s) +
φ2R− φ2

2 − φ2R− φ2

R− φ2

wi(s) + ηi(s′)

[x′(x, s, s′)− y(s′)] = [x− y(s)] +
φ2(1− φ2)

R− φ2

wi(s) + ηi(s′)
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Thus, there is a random walk component to an agents asset position relative to the aggre-
gate.

Why should we think that a constant interest rate is consistent with both the random walk
case (full persistence), but not when aggregate shocks have imperfect persistence? Does it
work if the aggregate shocks are i.i.d.? The key is that the interest rate in the economy
reflects the agents belief about the future. An agent that believes she will be richer in the
future wants to borrow. This pushes the interest rate up. An agent that believes she will be
poorer in the future wants to save, which has the opposite effect. When shocks are not fully
persistent, the aggregate state today may be above or below the expected state tomorrow.
In the simple i.i.d. case, whenever the economy experiences a bad shock, the agents expect
things to be better tomorrow. Through these mechanisms, these models predict high interest
rates during bad times and low interest rates during good times.

8


