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1 Balanced Growth Path

Consider the following deterministic growth model with leisure and capital investment

• Household’s preferences:

max
∑
t

βtU(ct, 1− nt)

s.t.
∑
t

pt(ct + xt) ≤
∑
t

pt(wtnt + rtkt)

kt+1 = xt + (1− δ)kt
ct, xt, kt+1 ≥ 0

0 ≤ nt ≤ 1

• Production function: yt = F (kt, λ
tnt), which is homogenous of degree 1

• Feasibility:
ct + kt+1 = F (kt, λ

tnt) + (1− δ)kt
Definition 1.1. A Balanced Growth Path is given by an initial capital k0 and λ such that
it is optimal to set

ct = c0λ
t

kt = k0λ
t

nt = n0

wt = λtw0

rt = r0
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Note that a balanced growth path is characterized by consumption, capital, and investment
all grow at a constant rate and the interest rate is constant. However, hours worked obviously
cannot grow exponentially, but wages do grow.
Question. Why do we care about Balanced Growth Path?

Consider the following Kaldor’s Growth Facts (1961):

1. Output per worker grows over time at relatively constant and positive rate.

2. Capital per worker grows over time at relatively constant and positive rate.

3. Output per worker and capital per worker grow at similar rates, so Kt/Yt is relatively
constant over time.

4. The real return to capital rt − δ is relatively constant over time.

5. The share of labor wtlt
yt

and share of capital rtlt
yt

are relatively constant.

6. Growth rate of ouput per worker differs across countries.

Therefore, if we want to write a macro model, we would like that in its steady states, it
establishes Kaldor’s facts.
Claim 1.2. With the BGP requirements, the equilibrium in our model will satisfy Kaldo’s
growth facts.

Proof. Homework

Utility Function Consistent with BGP

Start with the Euler equation of our model:

Uc(ct, 1− nt) = β(rt + 1− δ)Uc(ct+1, 1− nt+1)

Imposing BGP, we have that ∀t,

Uc(c0λ
t, 1− n0) = β(r0 + 1− δ)Uc(c0λt+1, 1− n0) (1)

Note that

λt = et log λ ⇒ dλt

dt
= λt log λ

Taking derivatives of both sides of (1) with respect to t, we have

Ucc(c0λ
t, 1− n0)λ

t log λc0 = β(r0 + 1− δ)Ucc(c0λt+1, 1− n0)λ
t+1 log λc0 (2)

Dividing (2) by (1), we have that ∀t,

Ucc(ct, 1− n0)

Uc(ct, 1− n0)
ct =

Ucc(ct+1, 1− n0)

Uc(ct+1, 1− n0)
ct+1

2



Hence, the ratio Ucc

Uc
c must be independent of consumption. In particular, we can write

that
Ucc(c, 1− n)

Uc(c, 1− n)
c = −γ(1− n)

Note: γ(1− n) is a constant that could still, in principle, depend on n.

Exercise: Show that the solution to the above differential equation is of the form

U(c, 1− n) = a+
c1−γ

1− γ
v(1− n)

for a function v(·) that only depends on 1 − n and some constants a, γ where γ 6= 1. As of
yet, both constants a and gamma may depend on n.

The properties of v(·) will be determined by the requirements that utility is increasing and
strictly concave in both arguments.

What about the intratemporal condition? The first order condition for consumption and
labor give us

U1−n(ct, 1− nt)
Uc(ct, 1− nt)

= wt

U1−n(ct, 1− nt)
Uc(ct, 1− nt)

= λtw0

Given the formulation that we have so far,

Uc = (1− γ)c−γ
v(1− n)

1− γ
Uc = (1− γ)c−γ ṽ(1− n)

U1−n = a′ + c1−γ ṽ(1− n)(−γ′ ln c) + c1−γ ṽ′(1− n)

Then, we have

a′ + c1−γ(−ṽ(1− n)γ′ ln c+ ṽ′(1− n))

(1− γ)c−γ ṽ(1− n)
= λtw0

a′ + (λtc0)
1−γ(−ṽ(1− n)γ′ ln(λtc0) + ṽ′(1− n))

(−γ)(λtc0)1−γ ṽ(1− n)
= λtw0

We need this equation to hold for all t. So intuitively, we must have the LHS increasing
multiplicatively with λt, just like the RHS. It turns out that the necessary and sufficient
conditions for this are that a′ and γ′ are 0, i.e., the constants do not vary with the labor
supply.
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Interpretation

In BGP, my preferences have to be such that percentage change in MRS will entail some
fixed percentage between consumption today and tomorrow. In other words, intertemporal
elasticity of substitution between consumption today and tomorrow has to be constant.
Define V (ct, ct+1) = u(ct) + βu(ct+1). Then by definition of elasticity of substitution

d(Vct/Vct+1)

d(ct/ct+1)

ct/ct+1

Vct/Vct+1

= −γ

Using the fact that V (ct, ct+1) = u(ct) + βu(ct+1) and ct+1 = λct, we obtain that

u”(ct)

u′(ct)
ct = −γ

2 An application: Ricardian equivalence

Here we study the impact of government tax and debt policy on aggregate economic out-
comes. Specifically, we consider a government who needs to finance some exogenous stream
of expenditures in an economy with complete markets. The government can levy lump-sum
taxes and issue debt. We establish the Ricardian equivalence: we show that the manner in
which the stream of expenditures is financed does not matter for aggregate outcomes.

2.1 The economic environment

To see this point, consider the same economy as before but add a government with some
exogenous per-capita expenditure plan g = {gt (st) : t ≥ 0, st ∈ St}. For simplicity, we
assume that government expenditures are thrown away. The government chooses the size
of per-capita lump-sum taxes, τ = {τt(st) : t ≥ 0, st ∈ St}, and of (state contingent)
per-capita debt issuance, B ≡ {Bt(s

t) : t ≥ 0, st ∈ St}, subject to the sequential budget
constraint:

gt
(
st
)

+Bt

(
st
)

=
∑
st+1∈S

Qt+1

(
st+1|st

)
Bt+1

(
st, st+1

)
+ τt

(
st
)

(3)

for all times t ≥ 0 and every history st ∈ St, where q0t(s
t) = Qt(st | st−1)×Qt−1(st−1 | st−2) . . .×

Q1(s1 | s0). For simplicity, we assume that, at time t = 0, the government starts with no
debt, B0(s0) = 0.

Agent i ∈ {1, . . . , I} maximizes ∑
t≥0

∑
st∈St

π0t(s
t)ui

[
cit(s

t)
]
,
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with respect to a consumption and asset holdings plan, (ci, ai) = {cit(st), ait(st) : t ≥ 0, st ∈
St}, subject to subject to

cit
(
st
)

+
∑
st+1∈S

Qt+1

(
st+1|st

)
ai,t+1

(
st, st+1

)
+ τt

(
st
)

= yit
(
st
)

+ ait
(
st
)

(4)

ai,t+1(s
t, st+1) ≥ Ai(s

t+1) (5)

for all times t ≥ 0 and histories st ∈ St, and ai0(s0) = 0.

The borrowing limits Ai(s
t) must satisfy

Ai
(
st
)

= yi
(
st
)

+
∑
st+1|st

Q
(
st+1|st

)
Ai
(
st+1

)
(6)

We define an equilibrium as follows:
Definition 2.1. Given a stream of government expenditures, g, a competitive equilibrium
consists of a debt and tax policy, {τ, B}, a consumption and asset allocation for each agentsm
{ci, ai}i∈I , a price system Q, and borrowing limits, {Ai}i∈I such that

• {B, τ} satisfies the government sequential budget constraint (3) given g and Q.

• For all i ∈ {1, . . . , I}, {ci, ai} solves agent i’s problem given Q and Ai;

• The borrowing limits {Ai} satisfy the natural borrowing limit equations;

• And markets clear
I∑
i=1

[
cit(s

t) + gt(s
t)
]

=
I∑
i=1

yit(s
t)

I∑
i=1

ait(s
t) = I ×Bt(s

t).

2.2 Sequential vs. time zero budget sets

In what follows we assume that |Bt(s
t)| ≤ B̄ for some sufficiently large and finite B̄.

For the government, the time-zero inter-temporal budget constraint equates the present value
of per capita expenditures to the present value of per capita lump sum taxes:∑

t≥0

∑
st∈St

q0t(s
t)gt(s

t) =
∑
t≥0

∑
st∈St

q0t(s
t)τt(s

t). (7)

For an agent, the time-zero inter-temporal budget constraint is:∑
t≥0

∑
st∈St

q0t(s
t)
[
ct(s

t) + τt(s
t)
]

=
∑
t≥0

∑
st∈St

q0t(s
t)yt(s

t). (8)

It is the same constraint as before, except for the fact that the agents’ expenditure include
the payment of a lump sum tax, τt(s

t).
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Proposition 2.2. Let q0t(s
t) ≡ Qt(st | st−1) × Qt−1(st−1 | st−2) × . . . × Q1(s1 | s0). Then,

the consumption and asset holding plan {ci, ai} is budget feasible for agent i in sequential
markets given Q if and only if it is budget feasible in time-zero markets given q and

ait(s
t) =

∑
k≥0

∑
st+k�st

q0t+k(s
t+k)

q0t(st)

[
ct+k(s

t+k) + τt+k(s
t+k)− yt+k(st+k)

]
, (9)

for all times t ≥ 0 and histories st ∈ St.
Proposition 2.3. Let q0t(s

t) ≡ Qt(st | st−1) × Qt−1(st−1 | st−2) × . . . × Q1(s1 | s0). Then, a
policy {g, τ, B} is budget feasible for the government in sequential markets given Q if and
only if it budget feasible in time-zero markets given q and

Bt(s
t) =

∑
k≥0

∑
st+k�st

q0t+k(s
t+k)

q0t(st)

[
τt+k(s

t+k)− gt+k(st+k)
]
, (10)

for all times t ≥ 0 and histories st ∈ St.

2.3 The main result

The main proposition for this section is that equilibria do not depend on the timing of taxes
and debt. To see how this result obtains, follow the logic of Corollary 2.2 and 2.3. From
2.2 , we know that the agent chooses her consumption plan “as if” she were facing the single
time-zero inter-temporal budget constraint (8). Notice in particular that the agent only
cares about the present value of lump-sum taxes she will pay to the government – the precise
timing of taxes does not matter.

Now, look at the the government inter-temporal budget constraint (2.3): it implies that the
present value of lump sum taxes must be equal to the present value of expenditures. Put
differently, if we substitute the government time zero inter-temporal budget constraint in the
agent time zero inter-temporal budget constraint, we obtain:∑

t≥0

∑
st∈St

q0t(s
t)
[
ct(s

t) + gt(s
t)
]

=
∑
t≥0

∑
st∈St

q0t(s
t)yt(s

t). (11)

Hence, government policy only constrains agents’ consumption choice via the present value
of its per capita expenditure. The details of public finance are irrelevant. This means that
if the government changes its stream of taxes to τ ′, or if it changes its debt policy to B′,
but keeps its expenditure the same, then the agent’s original consumption plan remains
optimal.

The asset holdings must change however, and are determined by (9). For example, if the
government reduces τt(s

t) and increases τt+k(s
t+k), then it must increase the amount of debt

it issues, Bt+1(s
t, st+1). One sees from (9) that the asset holdings ait+1(s

t, st+1) of the agent,
ait+1(s

t, st+1), must increase as well. Indeed, the agent saves more because he anticipates
the future increase in lump sum taxes at time t+ k. Formally, we obtain:
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Proposition 2.4. Consider an equilibrium {τ, B, ci, ai, Q} and let

q0t(s
t) ≡ Qt(st | st−1)×Qt−1(st−1 | st−2)× . . .×Q1(s1 | s0).

Consider any stream of taxes τ̂ such that:∑
t≥0

∑
st∈St

q0t(s
t)τ̂t(s

t) =
∑
t≥0

∑
st∈St

q0t(s
t)τt(s

t). (12)

Then {τ̂ , B̂, ci, âi, Q} is an equilibrium, where B̂ and â are given by (9) and (10) given τ̂ .
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