Economics 8106 Macroeconomic Theory Recitation 4

Anh Thu (Monica) Tran Xuan
November 29th, 2016

Used in Conor Ryan's Recitation

1 A Basic New Keynesian Model

1.1 Motivation

Looking at data on money, output and prices, we see the following marcro and micro evidence

- Macro evidence on the effects of monetary policy shocks:
- Persistent effects on real variables
- Slow adjustment of aggregate price level
- Liquidity effect,i.e. easy credit by monetary expansionary policy results in greater economic activity as businesses and individuals borrow to finance purchases and operations
- Micro evidence: significant price and wage rigidities

This is in conflict with the predictions of classical monetary models. Therefore, our goal here is to build a model that could have the flavor of real effects of monetary policy shocks, which is often called monetary business cycles.

1.2 A Baseline Model with Nominal Rigidities

1.2.1 Environment

There are 4 types of agents in this economy

1. Households: an infinitely-lived representative household whose preferences are represented by

$$
\mathbb{E}_{0} \sum_{t} \beta^{t} U\left[C\left(s^{t}\right), N\left(s^{t}\right), \frac{M\left(s^{t}\right)}{P\left(s^{t}\right)}\right]
$$

Household budget constraints:

$$
P\left(s^{t}\right) C\left(s^{t}\right)+M\left(s^{t}\right)+\sum_{s_{t+1}} Q\left(s^{t+1} \mid s^{t}\right) B\left(s^{t+1}\right) \leq W\left(s^{t}\right) N\left(s^{t}\right)+M\left(s^{t-1}\right)+B\left(s^{t}\right)+T\left(s^{t}\right)+\Pi\left(s^{t}\right)
$$

2. Final producer: Final good is producing competitively (take prices as given). The final good producer uses a continuum of intermediate goods $Y\left(i, s^{t}\right)$ to produce final output $Y\left(s^{t}\right)$ by a Dizit-Stiglitz CES technology

$$
Y\left(s^{t}\right):=\left[\int_{0}^{1} Y\left(i, s^{t}\right)^{\theta}\right]^{1 / \theta}
$$

Here $Y\left(i, s^{t}\right)$ is the output of a differentiated good indexed by i. We assume there is an exogenous continuum of such goods with measure one in the economy.
3. Intermediate producers:

There is measure one of firms, participating in monopolistic competition (which means they choose their own prices). Imagine there is a Calvo fairy in this economy. At the begining of every period t, the Calvo fairy taps a fraction $(1-\theta)$ of firms randomly, giving them permission to change their prices.
4. Government: The government prints money $M\left(s^{t}\right)$ and supply them to the households. Here we assume that money growth rate is stochastic, i.e.

$$
\frac{M\left(s^{t}\right)}{M\left(s^{t-1}\right)}=\mu\left(s^{t}\right)
$$

1.3 Analysis

Final Good Producer

Given prices, final good's producer chooses $Y\left(i, s^{t}\right)$ to solve:

$$
\begin{array}{ll}
\max _{\left\{Y\left(i, s^{t}\right)\right\}} & \sum_{t} \sum_{s^{t}} P\left(s^{t}\right) Y\left(s^{t}\right)-\int_{0}^{1} P\left(i, s^{t}\right) Y\left(i, s^{t}\right) d i \\
\text { s.t. } & Y\left(s^{t}\right)=\left[\int_{0}^{1} Y\left(i, s^{t}\right)^{\theta} d i\right]^{1 / \theta}
\end{array}
$$

which can be rewritten as

$$
\max _{\left\{Y\left(i, s^{t}\right)\right\}} \sum_{t} \sum_{s^{t}} P\left(s^{t}\right)\left[\int_{0}^{1} Y\left(i, s^{t}\right)^{\theta} d i\right]^{1 / \theta}-\int_{0}^{1} P\left(i, s^{t}\right) Y\left(i, s^{t}\right) d i
$$

FOCs:

$$
\begin{aligned}
{\left[\int_{0}^{1} Y\left(i, s^{t}\right)^{\theta} d i\right]^{\frac{1-\theta}{\theta}} P\left(s^{t}\right) Y\left(i, s^{t}\right)^{\theta-1} } & =P\left(i, s^{t}\right) \\
Y\left(i, s^{t}\right)^{\theta-1} & =\frac{P\left(i, s^{t}\right)}{P\left(s^{t}\right)}\left[\int_{0}^{1} Y\left(i, s^{t}\right)^{\theta} d i\right]^{\frac{\theta-1}{\theta}} \\
Y\left(i, s^{t}\right) & =\left[\frac{P\left(s^{t}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{t}\right)
\end{aligned}
$$

which is the demand for $Y\left(i, s^{t}\right)$. So

$$
Y^{d}\left(i, s^{t}\right)=\left[\frac{P\left(s^{t}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{t}\right)
$$

Also, zero-profit condition implies

$$
\begin{aligned}
P\left(s^{t}\right) Y\left(s^{t}\right)-\int_{0}^{1} P\left(i, s^{t}\right) Y\left(i, s^{t}\right) d i & =0 \\
P\left(s^{t}\right) Y\left(s^{t}\right)-\int_{0}^{1} P\left(i, s^{t}\right)\left[\frac{P\left(s^{t}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{t}\right) d i & =0 \\
P\left(s^{t}\right) Y\left(s^{t}\right)-P\left(s^{t}\right)^{\frac{1}{1-\theta}} Y\left(s^{t}\right) \int_{0}^{1} P\left(i, s^{t}\right)^{\frac{\theta}{\theta-1}} d i & =0
\end{aligned}
$$

So

$$
P\left(s^{t}\right)=\left[\int P\left(i, s^{t}\right)^{\frac{\theta}{\theta-1}}\right]^{\frac{\theta-1}{\theta}}
$$

Intermediate Good Producer

Question. Suppose that prices are flexible in a way that all of the intermediate producers are freely to choose their prices every period, i.e. $\alpha=0, \forall t$. What is $P\left(i, s^{t}\right)$?

$$
\begin{aligned}
& \max _{P\left(i, s^{t}\right)} P\left(i, s^{t}\right) Y^{d}\left(i, s^{t}\right)-W\left(s^{t}\right) N\left(i, s^{t}\right) \\
& \text { s.t. } \quad Y^{d}\left(i, s^{t}\right)=\left[\frac{P\left(s^{t}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{t}\right) \\
& Y^{d}\left(i, s^{t}\right)=N\left(i, s^{t}\right)
\end{aligned}
$$

Rewriting

$$
\max _{P\left(i, s^{t}\right)}\left[P\left(i, s^{t}\right)-W\left(s^{t}\right)\right]\left[\frac{P\left(s^{t}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{t}\right)
$$

FOCs:

$$
\begin{aligned}
\frac{\theta}{\theta-1} P\left(s^{r}\right)^{\frac{1}{1-\theta}} P\left(i, s^{t}\right)^{\frac{1}{\theta-1}} Y\left(s^{t}\right) & =\frac{1}{\theta-1} W\left(s^{t}\right) P\left(s^{t}\right)^{\frac{1}{1-\theta}} P\left(i, s^{t}\right)^{\frac{1}{\theta-1}-1} Y\left(s^{t}\right) \\
P\left(i, s^{t}\right) & =\frac{1}{\theta} W\left(s^{t}\right)
\end{aligned}
$$

that is the price of a intermediate good i is a markup of the wage rate on labor.

Calvo Fairy:

Given the demand for intermediate good i, the intermediate producer of good i solves:

$$
\begin{array}{ll}
\max _{P\left(i, s^{t}\right)} & \sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t} Q\left(s^{r} \mid s^{t}\right)\left[P\left(i, s^{t}\right) Y^{d}\left(i, s^{r}\right)-W\left(s^{r}\right) N\left(i, s^{r}\right)\right] \\
\text { s.t. } & Y^{d}\left(i, s^{r}\right)=\left[\frac{P\left(s^{r}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{r}\right) \\
& Y^{d}\left(i, s^{t}\right)=N\left(i, s^{t}\right)
\end{array}
$$

where $Q\left(s^{r} \mid s^{t}\right)$ is the stochastic discount factor.
Rewrite this problem:

$$
\begin{gathered}
\max _{P\left(i, s^{t}\right)} \sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t} Q\left(s^{r} \mid s^{t}\right)\left[P\left(i, s^{t}\right)-W\left(s^{r}\right)\right]\left[\frac{P\left(s^{r}\right)}{P\left(i, s^{t}\right)}\right]^{\frac{1}{1-\theta}} Y\left(s^{r}\right) \\
\max _{P\left(i, s^{t}\right)} \sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t}\left[Q\left(s^{r} \mid s^{t}\right) P\left(s^{r}\right)^{\frac{1}{1-\theta}} P\left(i, s^{t}\right)^{\frac{\theta}{\theta-1}} Y\left(s^{r}\right)-W\left(s^{r}\right) P\left(s^{r}\right)^{\frac{1}{1-\theta}} P\left(i, s^{t}\right)^{\frac{1}{\theta-1}} Y\left(s^{r}\right)\right]
\end{gathered}
$$

FOCs:

$$
\begin{equation*}
P\left(i, s^{t}\right)=\frac{\sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t} Q\left(s^{r} \mid s^{t}\right) W\left(s^{r}\right) P\left(s^{r}\right)^{\frac{1}{\theta-1}} Y\left(s^{r}\right)}{\theta \sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t} Q\left(s^{r} \mid s^{t}\right) P\left(s^{r}\right)^{\frac{1}{\theta-1}} Y\left(s^{r}\right)} \tag{1}
\end{equation*}
$$

Households

Given prices, HH solves:

$$
\begin{array}{ll}
\max & \sum_{t} \sum_{s^{t}} \beta^{t} \pi_{t}\left(s^{t}\right) U\left[C\left(s^{t}\right), N\left(s^{t}\right), \frac{M\left(s^{t}\right)}{P\left(s^{t}\right)}\right] \\
\text { s.t. } & P\left(s^{t}\right) C\left(s^{t}\right)+M\left(s^{t}\right)+\sum_{s_{t+1}} Q\left(s^{t+1} \mid s^{t}\right) B\left(s^{t+1}\right) \\
\quad \leq W\left(s^{t}\right) N\left(s^{t}\right)+M\left(s^{t-1}\right)+B\left(s^{t}\right)+T\left(s^{t}\right)+\Pi\left(s^{t}\right) \\
& \lim _{T \rightarrow \infty} \mathbb{E}_{t}\left(B\left(s^{T+1}\right)\right) \geq 0 \\
& B_{0}\left(s_{0}\right), M_{-1}\left(s^{-1}\right) \text { given }
\end{array}
$$

FOCs for HHs:

$$
\begin{aligned}
\beta^{t} \pi\left(s^{t}\right) U_{c}\left(s^{t}\right) & =\lambda\left(s^{t}\right) P\left(s^{t}\right) \\
\beta^{t} \pi\left(s^{t}\right) U_{n}\left(s^{t}\right) & =-\lambda\left(s^{t}\right) W\left(s^{t}\right) \\
\lambda\left(s^{t}\right) & =\beta^{t} \pi_{t}\left(s^{t}\right) \frac{U_{m}\left(s^{t}\right)}{P\left(s^{t}\right)}+\sum_{s_{t+1} \mid s^{t}} \lambda\left(s^{t+1}\right) \\
\lambda\left(s^{t}\right) Q\left(s^{t+1} \mid s^{t}\right) & =\lambda\left(s^{t+1}\right)
\end{aligned}
$$

Divide the first two equations, and substitute in $\lambda\left(s^{t}\right), \lambda\left(s^{t+1}\right)$ from the first equation to other equations and simplify, we get

$$
\begin{align*}
-\frac{U_{n}\left(s^{t}\right)}{U_{c}\left(s^{t}\right)} & =\frac{W\left(s^{t}\right)}{P\left(s^{t}\right)} \tag{2}\\
\frac{U_{c}\left(s^{t}\right)}{P\left(s^{t}\right)}-\frac{U_{m}\left(s^{t}\right)}{P\left(s^{t}\right)} & =\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s^{t+1} \mid s^{t}\right) \frac{U_{c}\left(s^{t+1}\right)}{P\left(s^{t+1}\right)} \tag{3}\\
Q\left(s^{t+1} \mid s^{t}\right) & =\beta \pi\left(s^{t+1} \mid s^{t}\right) \frac{U_{c}\left(s^{t+1}\right)}{U_{c}\left(s^{t}\right)} \frac{P\left(s^{t}\right)}{P\left(s^{t+1}\right)} \tag{4}
\end{align*}
$$

Question. What are the government budget constraint and market clearance conditions?

$$
\begin{aligned}
M\left(s^{t}\right) & =\mu\left(s^{t}\right) M\left(s^{t-1}\right) \\
\left.T\left(s^{t}\right)\right) & =M\left(s^{t}\right)-M\left(s^{t-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
C\left(s^{t}\right) & =Y\left(s^{t}\right) \\
N\left(s^{t}\right) & =\int N\left(i, s^{t}\right) d i \\
B\left(s^{t+1}\right) & =0
\end{aligned}
$$

1.4 Log-linearization

Assumption 1. Assume now that the preference is

$$
U=\frac{C_{t}^{1-\sigma}}{1-\sigma}-\frac{N_{t}^{1+\phi}}{1+\phi}+\frac{\left(M_{t} / P_{t}\right)^{1-\nu}}{1-\nu}
$$

The FOCs of HHs become

$$
\begin{align*}
\frac{N\left(s^{t}\right)^{\phi}}{C\left(s^{t}\right)^{-\sigma}} & =\frac{W\left(s^{t}\right)}{P\left(s^{t}\right)} \tag{5}\\
\frac{C\left(s^{t}\right)^{-\sigma}}{P\left(s^{t}\right)}-\frac{\left(M\left(s^{t}\right) / P\left(s^{t}\right)\right)^{-\nu}}{P\left(s^{t}\right)} & =\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s^{t+1} \mid s^{t}\right) \frac{C\left(s^{t+1}\right)^{-\sigma}}{P\left(s^{t+1}\right)} \tag{6}\\
Q\left(s^{t+1} \mid s^{t}\right) & =\beta \pi\left(s^{t+1} \mid s^{t}\right) \frac{C\left(s^{t+1}\right)^{-\sigma}}{C\left(s^{t}\right)^{-\sigma}} \frac{P\left(s^{t}\right)}{P\left(s^{t+1}\right)} \tag{7}\\
Q\left(s^{r} \mid s^{t}\right) & =\beta^{r-t} \pi\left(s^{r} \mid s^{t}\right) \frac{C\left(s^{r}\right)^{-\sigma}}{C\left(s^{t}\right)^{-\sigma}} \frac{P\left(s^{t}\right)}{P\left(s^{r}\right)} \tag{8}
\end{align*}
$$

Take \log on both sides of equation 5 , we have

$$
\phi \log N_{t}+\sigma \log C_{t}=\log W_{t}-\log P_{t}
$$

Linearize this equation with respect to the steady state values, we have

$$
\begin{array}{r}
\phi\left[\log N_{s s}+\frac{1}{N_{s s}}\left(N_{t}-N_{s s}\right)\right]+\sigma\left[\log C_{s s}+\frac{1}{C_{s s}}\left(C_{t}-C_{s s}\right)\right]= \\
\log W_{s s}+\frac{1}{W_{s s}}\left(W_{t}-W_{s s}\right)-\left[\log P_{s s}+\frac{1}{P_{s s}}\left(P_{t}-P_{s s}\right)\right]
\end{array}
$$

Define

$$
a_{t}=\frac{1}{a_{s s}}\left(A_{t}-A_{s s}\right)
$$

then we have

$$
\phi n_{t}+\sigma c_{t}=w_{t}-p_{t}
$$

For money demand, substitute 7 into 6 , we have

$$
\begin{aligned}
\frac{\left(M\left(s^{t}\right) / P\left(s^{t}\right)\right)^{-\nu}}{P\left(s^{t}\right)} & =\left[1-Q\left(s^{t+1} \mid s^{t}\right)\right] \frac{C\left(s^{t}\right)^{-\sigma}}{P\left(s^{t}\right)} \\
\frac{\left(M_{t} / P_{t}\right)^{-\nu}}{C_{t}^{-\sigma}} & =1-e^{-i_{t}} \approx i_{t}
\end{aligned}
$$

where $i_{t}=-\log Q_{t, t+1}$
Log-linearize this equation, we have

$$
\begin{aligned}
m_{t}-p_{t}-\frac{\sigma}{\nu} c_{t} & =-\frac{1}{\nu\left(e^{i}-1\right)} i_{t}+\frac{i}{\nu\left(e^{i}-1\right)} \\
m_{t}-p_{t} & \approx \frac{\sigma}{\nu} c_{t}-\eta i_{t}
\end{aligned}
$$

Log-linearize the Euler's equation, we have

$$
c_{t}=\mathbb{E}_{t} c_{t+1}-\frac{1}{\sigma}\left(i_{t}-\mathbb{E}_{t} \Pi_{t+1}-\rho\right)
$$

where $\rho=-\log \beta, \Pi_{t+1}=P_{t+1} / P_{t}$
Substitute 7 to 1 the equation of price for intermediate good:

$$
\begin{aligned}
& P\left(i, s^{t}\right)=\frac{\sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t} \beta^{r-t} \pi\left(s^{r} \mid s^{t}\right) \frac{C\left(s^{r}\right)-\sigma}{C\left(s^{-\sigma}\right)} \frac{P\left(s^{t}\right)}{P\left(s^{r}\right.} W\left(s^{r}\right) P\left(s^{r}\right)^{\frac{1}{\theta-1}} Y\left(s^{r}\right)}{\theta \sum_{r=t}^{\infty} \sum_{s^{r}} \alpha^{r-t} \beta^{r-t} \pi\left(s^{r} \mid s^{t}\right) \frac{-\left(s^{r}\right)-\sigma}{C\left(s^{t}\right)-\sigma} \frac{P\left(s^{t}\right)}{P\left(s^{r}\right)} P\left(s^{r}\right)^{\frac{1}{\theta-1}} Y\left(s^{r}\right)} \\
& \frac{P\left(i, s^{t}\right)}{P\left(s^{t-1}\right)}=\frac{\sum_{r=t}^{\infty} \sum_{s^{r}}(\beta \alpha)^{r-t} \pi\left(s^{r} \mid s^{t}\right) C\left(s^{r}\right)^{1-\sigma} W\left(s^{r}\right) P\left(s^{r}\right)^{\frac{2-\theta}{\theta-1}}}{\theta \sum_{r=t}^{\infty} \sum_{s^{r}}(\beta \alpha)^{r-t} \pi\left(s^{r} \mid s^{t}\right) C\left(s^{r}\right)^{1-\sigma} P\left(s^{r}\right)^{\frac{2-\theta}{\theta-1}}} \frac{1}{P\left(s^{t-1}\right)}
\end{aligned}
$$

So

$$
\begin{gather*}
\frac{P\left(i, s^{t}\right)}{P\left(s^{t-1}\right)} \sum_{r=t}^{\infty} \sum_{s^{r}}(\beta \alpha)^{r-t} \pi\left(s^{r} \mid s^{t}\right) C\left(s^{r}\right)^{1-\sigma} P\left(s^{r}\right)^{\frac{2-\theta}{\theta-1}} \\
=\frac{1}{\theta} \sum_{r=t}^{\infty} \sum_{s^{r}}(\beta \alpha)^{r-t} \pi\left(s^{r} \mid s^{t}\right) C\left(s^{r}\right)^{1-\sigma} W\left(s^{r}\right) P\left(s^{r}\right)^{\frac{2-\theta}{\theta-1}} \frac{1}{P\left(s^{t-1}\right)} \tag{9}
\end{gather*}
$$

In zero-inflation steady states, we must have

$$
\begin{aligned}
\Pi_{t} & =\frac{P\left(i, s^{t}\right)}{P\left(s^{t-1}\right)}=\frac{P\left(i, s^{t}\right)}{P\left(s^{t}\right)}=\frac{P\left(i, s^{t}\right)}{P\left(s^{r}\right)}=1 \\
Y\left(s^{r}\right) & =Y\left(s^{t}\right) \\
Q\left(s^{r} \mid s^{t}\right) & =\beta^{r-t} \\
W\left(s^{r}\right) & =\theta P
\end{aligned}
$$

Linearize eq 9 around the zero-inflation steady states (w.r.t. $\left.P\left(i, s^{t}\right), P\left(s^{t-1}\right), P\left(s^{r}\right), C\left(s^{r}\right), W\left(s^{r}\right)\right)$

$$
\begin{aligned}
L H S= & \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}}+\frac{1}{P} \mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}}\left(P\left(i, s^{t}\right)-P\right) \\
& -\frac{P}{P^{2}} \mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}}\left(P\left(s^{t-1}\right)-P\right) \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma}\left(\frac{2-\theta}{\theta-1}\right) P^{\frac{1}{\theta-1}}\left(P\left(s^{r}\right)-P\right) \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t}(1-\sigma) C^{-\sigma} P^{\frac{2-\theta}{\theta-1}}\left(C\left(s^{r}\right)-C\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\text { LHS }= & \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}}+\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} p_{t}(i) \\
& -\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} p_{t-1} \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma}\left(\frac{2-\theta}{\theta-1}\right) P^{\frac{\theta}{\theta-1}} p_{r} \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t}(1-\sigma) C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} c_{r}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
R H S= & \frac{1}{\theta} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} W_{s s} \\
& -\frac{1}{\theta} \mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} W_{s s} \frac{1}{P} p_{t-1} \\
& +\frac{1}{\theta} \mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma}\left(\frac{2-\theta}{\theta-1}\right) P^{\frac{\theta}{\theta-1}} W_{s s} \frac{1}{P} p_{r} \\
& +\frac{1}{\theta} \mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t}(1-\sigma) C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} W_{s s} \frac{1}{P} c_{r} \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} w_{r}
\end{aligned}
$$

So

$$
\begin{aligned}
R H S= & \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} \\
& -\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} p_{t-1} \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma}\left(\frac{2-\theta}{\theta-1}\right) P^{\frac{\theta}{\theta-1}} p_{r} \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t}(1-\sigma) C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} c_{r} \\
& +\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} w_{r}
\end{aligned}
$$

Equating the LHS and RHS, we have that

$$
\begin{aligned}
\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} p_{t}(i) & =\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} C^{1-\sigma} P^{\frac{2-\theta}{\theta-1}} w_{r} \\
\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} p_{t}(i) & =\mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} w_{r} \\
p_{t}(i) & =(1-\beta \alpha) \mathbb{E}_{t} \sum_{r=t}^{\infty}(\beta \alpha)^{r-t} w_{r}
\end{aligned}
$$

