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1 Sequential Trading with Arrow Securities

In this first section, we will study the sequential trading formulation of an endowment econ-
omy and its implications on asset pricing. The reference text for this portion is sections 8.7
and 8.8 in Ljungqvist and Sargent.

First consider the most basic stochastic endowment economy. The household will solve the
following problem,

max
(ct(st),at+1(st))

∞∑
t=0

∑
st

βtπ(st|s0)u(ct(s
t))

s.t.∑
t

∑
st

qt(s
t)ct(s

t) ≤
∑
t

∑
st

qt(s
t)yt(s

t)

ct ≥ 0

s0 > 0, given
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And because of the resource constraint, this economy will have the solution, for every time
period and history,

ct(s
t) = yt(s

t)

qt = βtπ(st)u′(yt(s
t))

1.1 Pricing Arrow Securities

Suppose we have an endowment economy with a large number of identical consumer. Each
consumer’s endowment follows some random markov process. In a sequential trading envi-
ronment, a consumer solves the following problem:

max
(ct(st),at+1(st))

∞∑
t=0

∑
st

βtπ(st|s0)u(ct(s
t))

s.t.

ct(s
t) +

∑
st+1|st

Qt(st+1|st)at+1(s
t+1) ≤ yt(s

t) + at(s
t)

ct ≥ 0

at+1 ≥ A

a0(s0) = 0

s0 > 0, given

The first order conditions for consumption and asset purchases of the consumer are

βtπ(st)u(c(st)) = µ(st)

Qt(st+1|st)µ(st) =
∑
st+1|st

µ(st+1)

Combining, we get

Qt(st+1|st) = π(st+1|st)β
u′(st+1)

u′(st)

It’s also useful to see the relation to the date-0 arrow price. I will change up notation a bit
and call that price qt(s

t). Recall from an Arrow-Debreu market that

βπ(st)
u′(st)

u′(s0)
= qt(s

t)

It follows relatively easily, and we have shown this before in similar environments that,

Qt(st+1|st) =
qt+1(s

t+1)

qt(st)
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The later portion of this equation is often referred to as a stochastic discount factor, mt+1.

Qt(st+1|st) = π(st+1|st)mt+1(s
t + 1)

1.2 Pricing any Arbitrary Asset

Now consider any arbitrary asset that pays some stream of dividends or payouts over the
course of the future {dt(st)}∞t=0. This can be any arbitrary function of the state. I am going
to use a little bit of new notation. I will use qt(s

t) as the date 0 price of 1 unit of consumption
in any state st. This is the typical arrow price that we usually denote with p. Instead, I am
going to use p0τ (s

τ ) denote the date 0 price of the asset {dt(st)}∞t=τ , given that history sτ has
been realized. If this is confusing now, we will work through exactly what that means. For
instance, the initial price of this asset is simply the sum of all the value that this asset will
pay.

p00(s0) =
∑
t

∑
st

qt(s
t)dt(s

t)

Now let’s imagine that some amount of history has transpired and we want the price of the
remaining value of the asset, were it to be traded. The date-0 price of trading this asset in
period τ , given sτ would be

p0τ (s
τ ) =

∞∑
t=τ

∑
st|sτ

qt(s
t)dt(s

t)

This is simply the truncated sum of payments. Suppose we care more about the sequential
budget and we want to price the value of trading the asset in period τ in terms of consumption
in period τ . This would be

pττ (s
τ ) =

∞∑
t=τ

∑
st|sτ

qt(s
t)

qτ (sτ )
dt(s

t)

We simply renormalize the payoffs relative to the price of consumption at τ . Another useful
way to characterize the value of the asset is recursively.

pττ (s
τ ) = dτ (s

τ ) +
∑

sτ+1|sτ
pττ+1(s

τ+1)

pττ (s
τ ) = dτ (s

τ ) +
∑

sτ+1|sτ

qτ+1(s
τ+1)

qτ (sτ )
pτ+1
τ+1(s

τ+1)

pττ (s
τ ) = dτ (s

τ ) +
∑

sτ+1|sτ
Qt(st+1|st)pτ+1

τ+1(s
τ+1)

pττ (s
τ ) = dτ (s

τ ) + Etmt+1p
τ+1
τ+1(s

τ+1)
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2 Lucas Tree Economy

Now we will move to considering a full, albeit simple, equilibrium model of asset pricing.
This model is from Lucas 1978, and much of this treatment is from Chapter 13 of Ljungqvist
and Sargent. It is often referred to as a Lucas Tree model or a consumption-based asset
pricing model.

In this model, there is a large number of identical consumers. The only durable good in the
economy is a set of identical ”trees,” on for each person in the economy. We will consider
a representative agent and a single tree. Each period, this tree yields yt fruit, or dividends.
The yield of the tree follows some random markov process. The agent has access to two
savings assets, one risk free bond and equity in the tree, e.g. a stock. The one unit of
the risk free bond has some price R−1t and pays out a unit of consumption in the following
period. One unit of stock in the tree has price pt and entitles the agent to yt+1, as well as
the value of the stock in following period, pt+1. All together, the household’s problem can
be described as

max
(ct,Lt,Nt)

E0

∞∑
t=0

βtu(ct)

s.t.

ct +R−1t Lt + ptNt ≤ Lt−1 + (pt + yt)Nt−1

ct, Nt ≥ 0

Lt ≥ A

L−1 = 0

N−1 = 1

y0, given

There are no firms in this simple economy. In order for markets to clear, the agent must
consume the entire endowment, the bonds have to have 0 net supply, and all of the equity
in the tree must be owned by the agent.

ct = yt

Lt = 0

Nt = 1

These two financial assets give us two Euler Equations, and associated transversality condi-
tions.

u′(yt)R
−1
t = Etβu

′(yt+1)

u′(yt)pt = Etβ(yt+1 + pt+1)u
′(yt+1)

We could rewrite these equations using the stochastic discount factor formulation.

R−1t = Etmt+1

pt = Et(yt+1 + pt+1)mt+1
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2.1 Stock Prices

Notice that the Euler equation on stock prices looks a bit like the recursive formulation we
worked with before, only with additional stochastic discount factor. Suppose yt follows a
discrete markov chain,

pt = Etβ(yt+1 + pt+1)
u′(yt+1)

u′(yt)

pt =
∑

βπ(yt+1|yt)
u′(yt+1)

u′(yt)
yt+1 +

∑
βπ(yt+1|yt)

u′(yt+1)

u′(yt)
pt+1

This shows that again, even though markets are not exactly complete, the arrow security
price is appearing again in the pricing of our assets. If we follow out the recursion, we
get,

pt =
∑
j

∑
st+j |st

βπ(yt+j|yt)
u′(yt+j)

u′(yt)
yt+j + Et lim

k→∞
βk
u′(yt+k)

u′(yt)
pt+k

The last term is 0 by the transversality condition, which gives us that stock prices are equal to
the sum of all future dividends, discounted by the stochastic discount factor expression.

2.2 Martingale Theory of Stock Prices

A version of the theory of “efficient stock markets” is sometimes that the price of a stock
ought to evolve according to a martingale. For those unfamiliar with the term, a stochastic
process {xt} is said to follow a martingale if

E[xt+1|xt, . . . , x0] = xt

That is, conditioning on the entire history, the expectation of xt+1 is equal to xt. Consider
the Euler equation with the stock price,

pt = Etβ(yt+1 + pt+1)
u′(yt+1)

u′(yt)

The right-hand side can be expressed as the product of two expectations of random variables
and the covariance between the variables.

pt = βEt(yt+1 + pt+1)Et
u′(yt+1)

u′(yt)
+ βcovt

(
(yt+1 + pt+1),

u′(yt+1)

u′(yt)

)
In order to get the martingale result, we have to make a few assumptions that are relatively
restrictive. First, it must be that Et

u′(yt+1)
u′(yt)

is constant, and it must also be that covt
(
(yt+1 +

pt+1),
u′(yt+1)
u′(yt)

)
= 0. This would be true if agents were risk neutral, which is a pretty strong

assumption.
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2.3 Crop Insurance

For the sake of this process, let {yt} be a continuous random variable that evolves according
to a condition density function f(yt+1, yt). This is related to the transition function object
we studied last week. Suppose we want to price some crop insurance that pays one unit
of consumption in the following period, but only if yt+1 ≤ α. This will have a first order
condition that is similar to the ones we have already studied, but truncated.

qα(yt) = β

ˆ α

0

u′(yt+1)

u′(yt)
f(yt+1, yt)dyt+1

This example can show us some instructive results. For example, consider the case when the
agent is risk neutral. This implies that utility is linear, and that marginal utility is constant.
Thus, this will break down to

qα(yt) = β

ˆ α

0

f(yt+1, yt)dyt+1

qα(yt) = βPr(yt+1 ≤ α|yt)

or the “actuarial fair” price of insurance.

Consider another example with a risk averse agent who is currently experiencing okay crop
yields, i.e. yt > α. Note that this implies for all yt+1 ≤ α,

u′(yt+1)

u′(yt)
> 1

since marginal utility is decreasing for a risk averse agent. Thus, we get the result that an
agent will pay a premium for that risk.

qα(yt) > β

ˆ α

0

f(yt+1, yt)dyt+1

qα(yt) > βPr(yt+1 ≤ α|yt)

3 Equity Premium Puzzle

One of the biggest problems in macro finance is referred to as the Equity Premium Puzzle.
The“puzzle”amounts to the fact that for parameterizations of CRRA preferences that macro
economists consider to be reasonable, there is no way to justify the premium in returns on
stocks over bonds. There are a few ways to characterize this problem, one of which uses
much of what we have just covered. Consider an asset that has a price of 1 and a risky
payoff next period of Rt+1. The Euler equation for the household can be written using the
stochastic discount factor as

1 = Etmt+1Rt+1
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Again by breaking apart the expectations, we can get

1 = Etmt+1EtRt+1 + covt(mt+1, Rt+1)

The Cauchy-Shwartz Inequality tells us that |cov(x, y)| ≤ var(x)var(y). This gives us a
bound.

1 ≥ Etmt+1EtRt+1 − σt(mt+1)σt(Rt+1)

EtRt+1 ≤
1

Etmt+1

+
σt(mt+1)

Etmt+1

σt(Rt+1)

Since we know that the risk free rate is the inverse of the stochastic discount factor from the
household first order condition for bonds, we get

EtRt+1 ≤ Rf
t+1(1 + σt(mt+1)σt(Rt+1))

If we assume CRRA preferences of u(c) =
c1−γ

1− γ
, then we get that

σt(mt+1) = σt(β
(ct+1

ct

)−γ
)

In traditional settings, we typically find it very hard to believe that γ > 10 is crazy, but for
this equation to justify the kind of difference in expected returns, we would need γ closer to
25. Part of the problem is that aggregate consumption is not very volatile, and so it may
point to a problem with the representative agent formulation.
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