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1 Some Math Premilinaries

Many of the models that we talk about for the rest of the year will include some feature of
random variation. We would like to be able to use the dynamic programming results that
we have already applied to deterministic settings to solve these more complex problems. For
the most part, these results go through with nearly identical conditions. In this section, I
will introduce some basic concepts of measure theory and Markov processes. The technical
details are not terribly important, but it is good to be familiar with the vocabulary. You
can find in-depth discussion of these subjects in Chapters 7 and 8 of SLP.

1.1 Measure Spaces and Measure Functions

So far, we have developed the notion of a metric and a metric space. A metric tells a distance
between two general objects, e.g. functions, operations, etc. As you may guess, a measure
captures the notion of length, area, volume, etc. The first step in “measuring” anything is
to determine what we are able to know.



Definition 1.1. Let X be a set and 2" C 2% be a family of subsets of X. 2 is called a
o-algebra if

1. 0, X e &
2. Ee 2 = E°=X\E € 2 (Z is closed under complement.)
3. Vn,E, € ' = U E, € Z(Z is closed under countable union.)

A o-algebra imposes certain consistency to the family of sets under consideration. Only
subsets of the g-algebra can be known, hence measured. First, it must be possible to know
when none or all of the outcomes occurred. Also if there is an outcome that occurred it
must be possible to determine if it didn’t. Finally if it is possible to determine that some
outcomes occurred individually it can also be determined if at least one or all of them were
realized.

Definition 1.2. For any set X and c-algebra 27, the pair (X, 2") is called a measurable
space. Any set E € Z is measurable.

Definition 1.3. For any metric space (X, p), the Borel algebra is the smallest o-algebra
containing the open balls, i.e. containing all sets of the form £ = {x € X : p(x,z() < § }where
To € X and 0 > 0.

Definition 1.4. A measure is a function, p: 2 — R, that satisfies the following condi-
tions:

1. null set has measure zero; p () = 0,
2. W(E) >0,VE e X
3. p(-) is countably additive;

’ (UE> = u(E),

el i€l

for every disjoint countable collection of sets, I, in 2.

Definition 1.5. For any set X, o-algebra 2", and measure pu, the triplet (X, 2", u) is called
a measure space. If ;1 (X) =1, then p (-) is called a probability measure. In this case, we call
the triple (X, 27, 1) a probability space.

One can think of a function as mapping certain events in a given measure space to outcomes
in another measure space. A function is measurable if the sets that induce a given outcome
are measurable.

Definition 1.6. Given a measurable space (X, .2"), a real-valued function f : X — R is
measurable w.r.t. 2" (2 -measurable) if

{r e X|f(x) <a} C Z,VaeR



Definition 1.7. Given measurable spaces (X, Z") and (Y,%). Let I' : X =2 Y be a corre-
spondence. Then the function A : X — Y is a measurable selection from I' if A is measurable
and h(x) € T'(z),Vz € X.

Definition 1.8. Let (X, 27, 1) be a measure space. A proposition is said to hold almost
everywhere (a.e.) or almost surely (a.s.) if there exists a set £ € 2" such that u(E) =0
and the proposition holds in £°.

1.2 Markov Processes

Nearly every stochastic process that we examine in economics can be characterized as a
Markov Process. (i.i.d. is a special case of a Markov process). In words, a markov process is
a stochastic process in which the probability of some future event depends only on the current
event, rather than the entire history of the process. This is a convenient characteristic to
include in models for obvious reasons. The key feature of a Markov process is a transition
matrix, or more generally a transition function.

Definition 1.9. Let (X, Z") be a measurable space. A transition function is a function
Q: X xZ —10,1], such that:

1. for each x € X, @ (z,-) is a probability measure on (X, Z"),
2. and, for each £ € 2, Q (-, F) is a 2 -measurable function.
Definition 1.10. A stationary stochastic process {x;} is a markov process if for n > 1,
Pr(ziin|y, xi1, ... x0) = Pr(xg,|z)
For a markov process with transition function @,

Pr(zi € X|a) = Q(ay, X)

In a discrete setting, the transition function is often characterized by a transition matrix P
where an element of the matrix p;; is such that,

Pr(zi = jfﬂft =1) = Dij

Just as in the deterministic case, continuity is important for proving properties of the value
function. We need to define a kind of continuity property for the stochastic process in the
model.

Definition 1.11. A transition function @ on (Z, 2") has the Feller Property if the associated
operator 7' maps the space of bounded functions on Z into itself, i.e. T : C(Z) — C(Z).
The associated operator T is defined as

Tf(z)= /f(z')@(z,dz’), all z € Z



2 Stochastic Dynamic Programming

In this section, we will take an abbreviated look at Chapter 9 of SLP. It is important that
you be able to read this chapter and implement its findings. My goal here is to take the edge
off so that you feel comfortable investigating further on your own.

2.1 9.1 Principle of Optimality

First let’s introduce the spaces we are going to be working with.

(X, Z") - A measurable space for the endogenous state

(Z, %) - A measurable space for the exogeneous shock

(S, ) =(XXZ, X xZ)
We will assume that the exogenous state follows a stationary Markov process, with transition
function @ (+), defined on (7, %).

Given today’s state, s, we will denote the set of feasible next period states by I' (s); I': S — X
is the feasibility correspondence. Let A be the graph of T'(+):

A={(z,y,2) e X x X x Z|yeT(x,2)}
o ={Ce X xIX xZ|CCA}

In selection from A, x is today’s state, y is tomorrows state, and z is the exogenous
shock.

We will define F' : A — R is one-period payoff function (think utility function), and g > 0
is the discount factor. You can imagine the function F' being something like

We are going to be focusing on problems that can be written in the form
06 =v(e2) = swp (P2 +6 [0 Q ). )
yel'(s) Z

Definition 2.1. A plan is a value 7y € X and a sequence of measurable functions m; : Z! —
X, fort=1,2,....
Definition 2.2. A plan 7 is feasible from sy € S, if:

1. o € r (So),
2. and, 1 (2%) € T'[m_q (2'71), 2], for all 2t € Z! and t = 1,2,.. ..



We will denote the set of all feasible plans from sy by II(sg). Recall from the deterministic
case that, our first requirement for the sequence problem to be well defined was for I'(+)
to be a non-empty correspondence. Here, we need a stronger assumption that ensures the
existence of measurable selections. This is done in the following assumptions.
Assumption. 9.1

[ () is non-empty valued, and A is (Z° x X x Z)-measurable. Moreover, I (-
surable selection; i.e. there exists a measurable function h : S — X such that
foralls € S.

) has a mea-
h (s

) € I'(s)

Next, we need an analogous assumption to 4.2, which says that the period 0 utility for the
sequential problem is well defined for any feasible plan (although it can be plus or minus
infinity). To do so, we have to guarantee that the planner can calculate the expectation
Assumption. 9.2

F: A — R is .o -measurable, and one of the followings holds:
1. F>0 or FF <0.

2. For each so = (w0,20) € S and each plan © € T (so), Fm_1 (271, m (2Y), 2] is
ut (2o, -)-integrable, for t =1,2,..., and the limit

F (5[;07 T, ZO) + nh_{{.lo Z , ﬁtF [ﬂ-tfl (Ztil) ) Tt (Zt) 7Zt] /J’t (207 dzt)

Z

exists (although it might not be bounded).

Notice that, under Assumptions 9.1 and 9.2, discounted expected payoff (in a planner’s
problem) is well-defined, and we can define the sequential planner’s problem as:

v*(s) = sup {F To, Mo, 20) + Z 6 F 7Tt 1 ( 1) , Ty (zt) ,Zt} !t (zo,dzt)} . (2)

well(s)

Definition 2.3. If there exists a function v (-) that solves this functional equation, then, we
can define the associated policy correspondence as:

G(z,z) = {yEF(x,sz(x,z) :F(x,y,z)+6/Zv(y,z’)Q(z,dz')}. (3)

The meat of this section is to show that the functions defined in (1) and (2)) are equivalent and
that there solutions are equivalent. In Chapter 4, Theorem 4.2 showed that the supremum
function v* satisfies the function equation for v and 4.4 that the sequential solution was
a solution to the functional equation all along the path. There is no analogous version of
Theorem 4.2 in this setting because of measurability issues, and the stochastic analogy for
theorem 4.4 requires a few more additional assumptions/definitions. We do however have
relatively neat analogies for Theorem 4.3 and 4.5 which show the converse.



Theorem. 9.2 (Principle of Optimality—I)

Suppose (X, X)), (4, %), Q, I', F, and B satisfy Assumptions 9.1 and 9.2. Let v* be the
solution to[9, and v (-) be a measurable function that solves|l], so that:

. t t—1 t £y _

tllglo 4t ﬁ v [7Tt_1 (Z ) 724 2 (207 dz ) - 07
for all m € I (sg), and all so € S. Let G (-) be the correspondence defined by [3, which is
non-empty and permits a measurable selection. Then v* = v, and the plan generated by G (-)
attains the supremum in[3.

For the partial converse to Theorem 9.2, we need to strengthen Assumption 9.2.
Assumption. 9.3 If F takes on both signs, there is a collection of nonnegative, measurable
functions Ly : S — Ry, t =0,1,..., such that for all m € II(sg) and all sp € S

| F' (0, ™0, 20)| < Fo(s0);
|Flpi,_1 (2771, m(2Y), z)| < Li(so), all z, € Z', t =1,2,. ..

and

ZﬁtLt(So) < X0
t=0

Theorem. 9.4 (Principle of Optimality—II)

Suppose (X, X)), (Z,%), Q, I', F, and B satisfy Assumptions 9.1 through 9.3. Let v* (-)
be the solution to (@ Assume that v* is measurable and satisfies , and define G by (@
Assume that G is nonempty and permits a measurable selection. Let (xg,z9) = so € S, and
let T € I1(so) be a plan that attains the supremum in () for initial condition sy. Then there
exists a plan T generated by G from sy such that

G %
Ty = Ty, and

78 (s = mr(2)), pl(z,-)-ae., t=1,2,...

2.2 Bounded Returns

Next step, is to ensure the existence of a solution to the functional equation. Like the
deterministic case, when the return function is bounded, there is a good chance that this is
the case. In this section, we consider the fairly general assumptions under which, this is the
case, by focusing on the case of bounded returns.

Assumption. 9.4 (analog of A 4.3)

X is a conver Borel set in R, and 2 is its Borel subsets.



Assumption. 9.5
One of the followings holds:
1. Z is a countable set, and & is the o-algebra containing all of its subsets.

2. 7 is a compact Borel set in R*, with its Borel subsets 2, and the transition function
Q () has the Feller property (SLP Chapter 8.1).

The key role of Assumption 9.5 is to ensure that the integral in [I}

Mf(y,z):/Zv(y,z’)Q(z,dz’), for all (y,z2) € X x Z, (4)

maps a bounded continuous function v : X x Z — R into the space of bounded continuous
functions over X x Z. Moreover, by Lemma 9.5, assumptions 9.4 and 9.5 ensure that, if
v (+) is increasing or concave, then the integral would be an increasing or concave function

of (y,z).

Given this property, the rest is quite similar to the stochastic case; first, we may use Black-
well’s sufficient conditions to ensure that the mapping defined by [1| is a contraction, and
then use the Contraction Mapping Theorem to ensure the existence of a fixed point. First
we need the following two assumptions:

Assumption. 9.6 (analog of A 4.3)

The correspondence I' : X x Z — X is non-empty, compact-valued, and continuous.
Assumption. 9.7(analog of A 4.4)

The function F : A — R is bounded and continuous, and B € (0,1).

Now, we have the following theorem:
Theorem. 9.6 Existence € Uniqueness

Under Assumptions 9.4-9.7, the operator T, defined by

Tf(2,2) = sup {m,y, 2+ 8 /Z f(y,z’>Q<z,dz’>}, (5)

y€el'(s)

maps the set of bounded continuous functions, C (S), into itself, and has a unique fized point
in this set, v (-) € C'(S). Moreover, for all vy (-) € C (S):

IT"vo —vl] < 8" lvo — ol , n=1,2,....

In addition, the correspondence G () defined by@ s non-empty, compact-valued, and upper
hemi-continuous.

2.3 Inheriting Properties of the Value Function

If the operator M in[d] preserves the monotonicity and concavity of the integrand, it is natural
to expect that the value function inherits these properties from the payoff function; what we

7



had in the deterministic case, as well. To formalize this idea, let us introduce the following
assumptions. Note that, A; denotes the i-section of the set A, in what follows.
Assumption. 9.8

For each (y,z) € X x Z, F (-,y,2) : Ay. = R is strictly increasing.
Assumption. 9.9
For each z € Z, x < a' implies I' (z,2) € I (2, 2).

Now, we have our first inheritance property of the value function:
Theorem. 9.7 (analog of Thm 4.7)

Under Assumptions 9.4-9.9, the fized point of operator T in[J is strictly increasing in x, for
each z € Z.

The value function inherits the concavity of the payoff function as well:
Assumption. 9.10

For each z € Z, F (-,-,2) : A, — R is strictly concave in (z,y).
Assumption. 9.11

The set A, is convex.
Theorem. 9.8 (analog of Thm 4.8)

Under Assumptions 9.4-9.7 and 9.10-9.11, the fized point of operator T in [J is strictly
concave in x, for each z € Z, and the corresponding policy correspondence is a continuous
function.

Finally, v () inherits the differentiability of the payoff function, too:
Assumption. 9.12

For a fized z € Z, F (-,-, 2) is continuously differentiable in (x,y), in the interior of A,.
Theorem. 9.10 (analog of Thm 4.11)

Suppose Assumptions 9.4-9.7 and 9.10-9.12 hold, v (-) € C (S) is the fized point of operator
T in@ and g : S — X is the corresponding value function. If xo € intX, and g (o, 29) €
intl (xg, 20), then v (-, 29) is continuously differentiable in x at xo, with derivatives given by

Vj (IL'(),Z()) = E[ang(x07ZO)7ZO]7 fO’I”i - 1a27"'7l'
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