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1 Some Math Premilinaries

Many of the models that we talk about for the rest of the year will include some feature of
random variation. We would like to be able to use the dynamic programming results that
we have already applied to deterministic settings to solve these more complex problems. For
the most part, these results go through with nearly identical conditions. In this section, I
will introduce some basic concepts of measure theory and Markov processes. The technical
details are not terribly important, but it is good to be familiar with the vocabulary. You
can find in-depth discussion of these subjects in Chapters 7 and 8 of SLP.

1.1 Measure Spaces and Measure Functions

So far, we have developed the notion of a metric and a metric space. A metric tells a distance
between two general objects, e.g. functions, operations, etc. As you may guess, a measure
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captures the notion of length, area, volume, etc. The first step in “measuring” anything is
to determine what we are able to know.

Definition 1.1. Let X be a set and 2" C 2% be a family of subsets of X. 2 is called a
o-algebra if

1.0, X e &
2. Ee 2 = F°=X\E € 2 (Z is closed under complement.)
3. Vn,E, € & = U E, € Z(Z is closed under countable union.)

A o-algebra imposes certain consistency to the family of sets under consideration. Only
subsets of the o-algebra can be known, hence measured. First, it must be possible to know
when none or all of the outcomes occurred. Also if there is an outcome that occurred it
must be possible to determine if it didn’t. Finally if it is possible to determine that some
outcomes occurred individually it can also be determined if at least one or all of them were
realized.

Definition 1.2. For any set X and c-algebra 27, the pair (X, Z") is called a measurable
space. Any set £ € 2 is measurable.

Definition 1.3. For any metric space (X, p), the Borel algebra is the smallest o-algebra
containing the open balls, i.e. containing all sets of the form £ = {x € X : p(x,z¢) < d}where
2o € X and 6 > 0.

Definition 1.4. A measure is a function, p : 2" — R, that satisfies the following condi-
tions:

1. null set has measure zero; p () = 0,
2. u(E)>0,VE € &
3. p(+) is countably additive;
. (UE) e,
icl icl
for every disjoint countable collection of sets, I, in 2 .
Definition 1.5. For any set X, o-algebra 2", and measure pu, the triplet (X, 2", u) is called

a measure space. If ;1 (X) =1, then p (-) is called a probability measure. In this case, we call
the triple (X, 2", ) a probability space.

One can think of a function as mapping certain events in a given measure space to outcomes
in another measure space. A function is measurable if the sets that induce a given outcome
are measurable.



Definition 1.6. Given a measurable space (X, Z7), a real-valued function f : X — R is
measurable w.r.t. 2" (2 -measurable) if

{r e X|f(x) <a} C Z',VaeR

Definition 1.7. Given measurable spaces (X, 2") and (Y,%). Let I' : X = Y be a corre-
spondence. Then the function A : X — Y is a measurable selection from I' if A is measurable
and h(x) € T'(z),Vz € X.

Definition 1.8. Let (X, 27, 1) be a measure space. A proposition is said to hold almost
everywhere (a.e.) or almost surely (a.s.) if there exists a set £ € 2 such that u(E) =0
and the proposition holds in E°.

1.2 Markov Processes

Nearly every stochastic process that we examine in economics can be characterized as a
Markov Process. (i.i.d. is a special case of a Markov process). In words, a markov process is
a stochastic process in which the probability of some future event depends only on the current
event, rather than the entire history of the process. This is a convenient characteristic to
include in models for obvious reasons. The key feature of a Markov process is a transition
matrix, or more generally a transition function.

Definition 1.9. Let (X, Z") be a measurable space. A transition function is a function
Q: X xZ —10,1], such that:

1. for each x € X, Q (z,-) is a probability measure on (X, Z"),
2. and, for each £ € 2, Q (+, F) is a 2 -measurable function.

Definition 1.10. A stationary stochastic process {z;} is a markov process if for n > 1,
Pr(ziin|e, xi1, ... x0) = Pr(xg,|z)
For a markov process with transition function @,

Pr(xi € X|ay) = Q(4, X)

In a discrete setting, the transition function is often characterized by a transition matrix P
where an element of the matrix p;; is such that,

Pr(zyy = jlo, = 1) = pij



2 Real Business Cycle Model

One of the legacies of Minnesota Economics is the “Real Business Cycle” model. This type
of model has been extended and studied widely since its introduction in the 80s. In this
environment, everything will be exactly as we have studied it before. But now we will intro-
duce a stochastic process. The standard way to introduce this process is in the production
function.

Our stochastic process will be denoted by s;. For simplicity, lets assume that s; is discrete.
Le, s; € {s0,51,...,5n}. I will denote s' = (s, 8:_1,...,80), the entire sequence up to time
t. In general, Pr(s') = w(s"). We will assume that s; follows a Markov process. Why is this
so important?

A standard production function is F'(k,ng, 5¢) = A(s)k®n;~®. You can think of A(s,) as
some sort of random productivity. Or perhaps something about productivity that we do not
observe or understand...

2.1 Arrow Debreu Competitive Equilibrium

The definition of competitive equilibrium in this environment is very similar to the determin-
istic environment we already know and love. However, instead of solving for one deterministic
sequence of consumption or capital, we know need to solve for sequences of consumption given
every possible evolution of the stochastic shock. We will assume there is one infinitely lived
representative agent and one single sector firm.

Definition 2.1. An Arrow-Debreu Equilibrium is

e an allocation for the HH: 2 = {(c;(s?), kry1(s'), 2o ('), ne(s?), L (s%)) 152,
e an allocation for the firm: 2% = {(y/ ("), k! (s"),n] (s))}:2,
e a system of prices: p = {(pi(s"), wi(s"), r(s")) 12,

such that

(HH) Given p, Vi € I, 2 solves



o0

max Z Z 5tﬂ(3t)u(0t(8t), lt(st))

(ct(s?) ker1(st) e (s),ne(s?) L (s"))

s.t.
Z Zpt(s ) [ce(s') + x4 (sh)] < Z Z [wi(s")nu(s") + (s k(s 1)

(Firm) Given p, 2% solves

max SN puls )l (51) — s )nd (5") = muls' kY ()

(] (s1):k] ()] (s) =5 =

(Mkt) For all ¢, s,

(
(Labor Market) ny(s") = n/
(Capital Market) k,(s'™') = kI ()

The first order conditions of this model give us,
Bl (s uc(s') = pe(s)A
B (s uy(s") = w(sHA
pi(s') = Z rea (s 4+ (1= 0)prya (s)

St+1,8t

(4)
()

The first order condition for consumption gives us the expression for an Arrow price in this
stochastic environment. Notice that the price will include the probability of the state of the
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world, similar to how the price bakes in the present value discounting.
t
t by Uels)
pi(s') = Bm(s")
ue(S0)
Writing the Euler equation in a stochastic environment is a little different, since time no
longer advances on a deterministic path.

B (s ue(s') = pi(s')A
5t7r(3t)uc(3t) = AZTHl(StH) +(1 - 5)pt+1($t+1)

B (s u.(s" Z)\thrl tH)(TtH(StH) +(1 (5))

S pra(stth)

t i1, t+1 t+1 ri(s'™)
- ;-Hﬁ (e )(pt+1(5t+1) S 5))
Brm(stuc(s’) = Zﬁt“ﬂ(st“) (ST (F(s™h) + (1 - 9))
t+1>(Fk(St+1) + (1 _ 5))
— 52# st+1|st)uc(st+1)(Fk(stﬂ) +(1-— 6))

uc(s') = BE[uc(s"™) (Fi(s"™) + (1 = 0)) 5]

The transition in probabilities and the summation in the second to last line comes from

(st _ (s st (st)
m(s!) m(s!)
= (5111, 5)[5")

= m(se41s")

2.2 Sequential Markets Equilibrium

In a stochastic setting, the Arrow Debreu construction automatically assumes complete insurance.
This means that the agent can borrow across different states of the world and insure herself

to any kind of risk. This is implicit in the summations across all states in the Arrow Debreu
setup. In a sequential market equilibrium, this takes the form of Arrow securities. I won’t
write out the whole equilibrium definition again, but the household budget constraint will
become

a(s') + z(s) + Z @ (s1, 8 ) g1 (541, 87) < wi()ne(s") 4 ro(8") ke (s71) 4 au(s')

St+1




In the deterministic setting, the agent bought one bond for the next period. Now, the agent
buys an asset for every possible realization of the stochastic shock. The assets are thus
priced accordingly. If p(s") is the lagrange multiplier on the budget constraint, The first
order conditions for these assets give us

@ (5415 5t>ﬂt(5 ) = Mt+1(3t+1)
Qi (se41,8")8'm(s ue(s') = B (s ue(s™)
ue(s"1)

G(se11,8") = Br(si41]s" ) ue(st)

This formulation will be used frequently later in the course, when we are interested in the
types of assets that agents can use to save. Just as in the deterministic case, we will have a
borrowing limit here for every state and time period. What might happen if we imagine a
borrowing limit that could potentially be binding? If the markets were incomplete, and the
agent only had access to one asset for every state of the world, what would the price of the
asset become?

2.3 The Social Planner Problem

Just as in the deterministic setting, it will be useful to rewrite the competitive equilibrium
as a dynamic planning problem. In this section, I will drop the investment and leisure
allocations. We will be assuming all the typical assumptions about production and utility
that imply all the constraints are binding and allow us to make the appropriate substitutions.
The sequential social planner problem is

v(ko, sg) = max br(su(e(sh), 1 — ny(st
(ooso) = max 3OS (s ule(s). 1 = (')

=0 st
s.t.
ci(s') + ks (s) < F(k (St_l)ant(st)ast)+(1—5)k’t(3t_1)wa s'
cr(s')s ke (s),me(s) > 0, Vt, &'
ni(s') <1, Vt, s
ko, so >0, given

3 Dynamic Programming - A Special Case

Now we turn to our favorite tool, dynamic programming. Chapter 9 of Stokey Lucas Prescott
extends the deterministic results from Chapter 4 to a stochastic setting. In the next section,
I have borrowed an abbreviation of the assumptions and theorems in Chapter 9 from Monica



Tran Xuan’s notes—She was the TA for this course last year. You can find her full treatment
of this material on her website under Recitation 2 for 8106. In this section we are going to
walk through a proof for a special case. In the A(k) model with constant-relative-risk-
aversion preferences, we can prove that consumption and investment will be constant shares
of output. This is a useful result for solving problems with stochastic taxation.

Cl—a

) =
F(k,n,s) = A(s)k
I will write the problem as though 6 = 1. However, in the A(k) model, you can simply
imagine that the productivity term A(s) already includes depreciation. We will also assume

that the stochastic process is a stationary Markov process. In this setting, the dynamic
social planners problem becomes

_ l-0o
v(k,s) = max [Als)k = ¥]
kel (k,s) 1-—

D(k, s) = {K]0 < K < A(s)k}

+BEV (K, )]s]

Proposition 3.1. In this environment, the value function V is homogeneous of degree 1 — o
in capital and the policy function gy s homogeneous of degree 1 in capital.

Proof. The proof for this is identical to problem 6 from Problem set 2. It is much easier
to prove when you write the problem sequentially, as in section 2.3. First you show using
a proof by contradiction that the policy functions must be homogeneous of degree 1, since
the feasibility constraints are linear in initial capital. Then the homogeneity of the value
function will follow easily. Through the theorems of Chapter 9, these two problems are
equivalent. O

Proposition 3.2. In this environment, if the stochastic process for s; s i.i.d., then the
policy functions for capital and consumption, gp and g., can be written as constant fractions
of output, where for some ¢ € [0, 1],
gr(k, s) = pA(s)k
ge(k,s) = (1 = ¢)A(s)k

Proof. Using proposition 3.1, we can rewrite the objective function of the problem,

(AR 71 = ] 7

v(k,s) = Jmax o Al + BEK'7V(1,5)|s]
— 1-0o [1 B ﬁ;)k]l_a k' 1-0o /
v(k,s) = max (A(s)k) ™"\ —— —+ ﬁ(A(s)k) EV(L,5')]s]
v(k, s) = <A<s>k>”< max = all BBV s’>|SJ)
T Wel(ks) 1—o A(s)k ’


https://sites.google.com/site/anhthutranxuan/teaching

We can rewrite the feasibility correspondence

T(k,s) = {K']0 < & < A(s)k}
k/

T(k,s) = {k|0 < A% <

For posterity, let’s consider the case when s; follows a general Markov process. Then we can
define D(s) = E[V(1,s')|s]. The problem becomes,

o(k, 5) = (A(s)k:)l“’< max =07 ngl_"D(s))

¢c,1] 1—o
gi(k, 8) = o(s)A(s)k

As the maximization problem does not have k in it, it is evident that the optimal ¢ does not
depend on k. However, it may still depend on s. If we use the additional assumption that s
is i.i.d., then E[V(1,5")|s] = E[V(1,s")], which we can simply write as a constant D. Then
the problem becomes,

v(k,s) = (A(s)k)l(’( max L7 5¢1UD>

cl0,]] 1—o
gr(k,s) = 0A(s)k

Now, the maximization problem only depends on constants. If we assume that there is an
interior solution,

1—¢]" = B(1—0)p~D
1-¢=(B(1—-0)D) "¢

b= 1
1+ (8(1—0)D)"=

Thus, ¢ is independent of the state, and the optimal level of consumption and next periods
capital is a constant fraction of output. n

4 Notes on SLP 9.1 and 9.2

The following notes come to you courtesy of Monica Tran Xuan.

4.1 9.1 Principle of Optimality

Suppose (X, Z) and (Z, Z') are measurable spaces, and (5,.%) = (X x Z, 2" x %) is the
product space. S is the set of states for this system, whose elements consist of an exogenous
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state, z € Z, and an endogenous state, x € X. We will assume that the exogenous state
follows a stationary Markov process, with transition function @ (-), defined on (Z, Z).

Given today’s state, s, let us denote the set of feasible next period states by I' (s); I' : S — X
is the feasibility correspondence. Let A be the graph of T'(+):

A={(z,y,2) e X x X x Z|yeT (zx,2)}.

Suppose F': A — R is one-period payoff function, and 5 > 0 is the discount factor.

Recall that, in a sequential setting, a planner’s problem in each period is to choose a sequence
of contingent plans that maximize the discounted expected value of utility. These contingent
plans can be viewed as functions of the history of shocks up to a given date ¢, namely,

2t

tegt
{me01(z)}28

st 0< x4y (zt, zt’l) <T [xt(zt’l), zt} for all 2/~ and z,

given kg and zp.

max Ey ZﬁtF [iUt (Zt_l) s Tl (Zu Zt_l) ,Zt} (6)
t=0

The recursive counterpart of this optimization problem can be written in terms of the fol-
lowing functional equation:

o) = o) = s {Flapa+8 [ o)), 7)

y€l(s)

To generalize this problem, to a setting where z is a Markov process instead of a Markov
chain, let (Z', Z") be the product space up to period ¢ > 1, and 2z' € Z' be the partial
history of shocks up to date . Then, we can define a plan as follows:

Definition 4.1. A plan is a value 7y € X and a sequence of measurable functions m; : Zt —
X, fort=1,2,....

Definition 4.2. A plan 7 is feasible from sy € 9, if:

1. mp € I' (s0),
2. and, m (2") € T[m_y (2071), 2], forall 2t € Z! and t = 1,2, .. ..

Let us denote the set of all feasible plans from sy by II(sg). Recall from the deterministic
case that, our first requirement for the sequence problem to be well defined was for I'(+)
to be a non-empty correspondence. Here, we need a stronger assumption that ensures the
existence of measurable functions. This is done in the following assumptions.
Assumption. 9.1

has a mea-

[ () is non-empty valued, and A is (Z° x X~ x Z)-measurable. Moreover, T (+)
th(s)eTI(s)

surable selection; i.e. there exists a measurable function h : S — X such tha

forall s € S.
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It is straightforward to show that, under Assumption 9.1, II(sq) is non-empty for all s €
S.

Next, we have to specify how the planner calculates the expectations in [6] To do so, given
the transition function of the Markov process governing z, it is straightforward (at least
intuitively) to construct a probability measure explaining the evolution of history up to date
t, namely u' (z0,-) : 2 — [0,1]. Now, if we define a o-algebra, < as:

o ={CeX XX xZ|CcCA},

for the discounted expected payoff to be well-defined a the general version of [}, we can impose
the following assumption:
Assumption. 9.2 F : A — R is &/ -measurable, and one of the followings holds:

1. F>0or F <0.

2. For each so = (xg,20) € S and each plan 7 € I (sg), F [m_1 (2*71) 7 (2), 2] is
ut (20, -)-integrable, for t =1,2,..., and the limit

F(wo.mo,z0) + lim 3 [ B [mic (7 m (1) 2] o (2o, 2")
n oot Zt

exists (although it might not be bounded).

Notice that, under Assumptions 9.1 and 9.2, discounted expected payoff (in a planner’s
problem) is well-defined, and we can define the value of a planner as:

well(s)

v*(s) = sup {F (@0, mo, 20) + nlgroloz g BtF [7rt_1 (Zt—l) T (zt) ,Zt] ut (Zo,dzt)} (8
t=1

Definition 4.3. If there exists a function v (-) that solves this functional equation, then, we
can define the associated policy correspondence as:

G(z,z) = {yGF(x,sz(x,z) :F(x,y,z)+6/Zv(y,z’)Q(z,dz')}. 9)

How can we generate a plan from this correspondence? Notice that, now, G (z, z) being
non-empty is not enough to ensure the existence of a feasible plan; now we need existence
of a measurable selection from G (-). If such a measurable selection exists, say go, g1, . .. is a
sequence of measurable selections from G (+), then we can generate a plane as:

To = 9o (S0) ,
m (zt) =g [7rt_1 (zt_l) ,zt} , forall 2! € Z' and t > 1.

Now, we are ready to present a partial counterpart of the principle of optimality for the
stochastic setting, analogous to Theorems 4.3 and 4.5:
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Theorem. 9.2 (Principle of Optimality—I)

Suppose (X, X)), (Z,%), Q, T, F, and § satisfy Assumptions 9.1 and 9.2. Let v* (-) be the
solution to[8, and v (-) the solution to[7 so that:

lim Bl [7rt_1 (zt_l) ,zt} ut (zo, dzt) =0,

t—o00 VA

for all m € I (sg), and all so € S. Let G (-) be the correspondence defined by [9, which is
non-empty and permits a measurable selection. Then v* = v, and the plan generated by G (-)
attains the supremum in[§.

For the partial converse to Theorem 9.2, we need to strengthen Assumption 9.2.
Assumption. 9.3 If F takes on both signs, there is a collection of nonnegative, measurable
functions Ly : S — Ry, t =0,1,..., such that for all m € II(sg) and all sp € S

| F' (0, ™0, 20)| < Fo(s0);
|Flpi,_1 (2771, m(2Y), z)| < Li(so), all z, € Z', t =1,2,. ..

and

ZﬁtLt(So) < X0
t=0

Theorem. 9.4 (Principle of Optimality—II)

Suppose (X, X)), (Z,%), Q, I', F, and B satisfy Assumptions 9.1 through 9.3. Let v* (-)
be the solution to (@ Assume that v* is measurable and satisfies (@, and define G by (@
Assume that G is nonempty and permits a measurable selection. Let (xg,z9) = so € S, and
let T € I1(so) be a plan that attains the supremum in (§) for initial condition sy. Then there
exists a plan T generated by G from sy such that

G %
Ty = Ty, and

78 (s = mr(2)), pl(z,-)-ae., t=1,2,...

4.2 Bounded Returns

Next step, is to ensure the existence of a solution to the functional equation. Like the
deterministic case, when the return function is bounded, there is a good chance that this is
the case. In this section, we consider the fairly general assumptions under which, this is the
case, by focusing on the case of bounded returns.

Assumption. 9.4 (analog of A 4.3)

X is a conver Borel set in R, and 2 is its Borel subsets.
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Assumption. 9.5
One of the followings holds:
1. Z is a countable set, and & is the o-algebra containing all of its subsets.

2. 7 is a compact Borel set in R*, with its Borel subsets 2, and the transition function
Q () has the Feller property (SLP Chapter 8.1).

The key role of Assumption 9.5 is to ensure that the integral in [7]

Mf(y,z):/Zv(y,z’)Q(z,dz’), for all (y,z2) € X x Z, (10)

maps a bounded continuous function v : X x Z — R into the space of bounded continuous
functions over X x Z. Moreover, by Lemma 9.5, assumptions 9.4 and 9.5 ensure that, if
v (+) is increasing or concave, then the integral would be an increasing or concave function

of (y,z).

Given this property, the rest is quite similar to the stochastic case; first, we may use Black-
well’s sufficient conditions to ensure that the mapping defined by [7] is a contraction, and
then use the Contraction Mapping Theorem to ensure the existence of a fixed point. First
we need the following two assumptions:

Assumption. 9.6 (analog of A 4.3)

The correspondence I' : X x Z — X is non-empty, compact-valued, and continuous.
Assumption. 9.7(analog of A 4.4)

The function F : A — R is bounded and continuous, and B € (0,1).

Now, we have the following theorem:
Theorem. 9.6 Existence € Uniqueness

Under Assumptions 9.4-9.7, the operator T, defined by

Tf(2,2) = sup {F(%y,ZHB /Z f(y,z’>Q<z,dz’>}, (1)

y€l'(s)

maps the set of bounded continuous functions, C (S), into itself, and has a unique fized point
in this set, v (-) € C'(S). Moreover, for all vy (-) € C (S):

IT"vo —vl] < 8" lvo —ofl, n=1,2,....

In addition, the correspondence G () defined by@ s non-empty, compact-valued, and upper
hemi-continuous.

4.3 Inheriting Properties of the Value Function

If the operator M in preserves the monotonicity and concavity of the integrand, it is
natural to expect that the value function inherits these properties from the payoff function;
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what we had in the deterministic case, as well. To formalize this idea, let us introduce the
following assumptions. Note that, A; denotes the i-section of the set A, in what follows.
Assumption. 9.8

For each (y,z) € X x Z, F (-,y,2) : Ay. = R is strictly increasing.
Assumption. 9.9

For each z € Z, x < a' implies I' (z,2) € I (2, 2).

Now, we have our first inheritance property of the value function:
Theorem. 9.7 (analog of Thm 4.7)

Under Assumptions 9.4-9.9, the fized point of operator T in 18 strictly increasing in x,
for each z € Z.

The value function inherits the concavity of the payoff function as well:
Assumption. 9.10

For each z € Z, F (-,-,2) : A, — R is strictly concave in (z,y).
Assumption. 9.11

The set A, is convex.
Theorem. 9.8 (analog of Thm 4.8)

Under Assumptions 9.4-9.7 and 9.10-9.11, the fized point of operator T in 15 strictly
concave in x, for each z € Z, and the corresponding policy correspondence is a continuous
function.

Finally, v () inherits the differentiability of the payoff function, too:
Assumption. 9.12

For a fized z € Z, F (-,-, 2) is continuously differentiable in (x,y), in the interior of A,.
Theorem. 9.10 (analog of Thm 4.11)

Suppose Assumptions 9.4-9.7 and 9.10-9.12 hold, v (-) € C (S) is the fized point of operator
T in and g : S — X is the corresponding value function. If zq € intX, and g (xo, 2z0) €
intl (xg, 20), then v (-, 29) is continuously differentiable in x at xo, with derivatives given by

Vj (IL'(),Z()) = E[ang(x07ZO)7ZO]7 fO’I”i - 1a27"'7l'
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