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1 Applying SLP to the Single Sector Growth Model

Chapter 4 of Stokey Lucas Prescot demonstrates that we can write a sequential maximization
problem as a dynamic program and shows us what kind of assumptions are needed to infer
properties about the value function. In these notes, we will apply those methods to the single
sector growth model and walk through some of the more fundamental proofs.

SLP focuses on models that can be written as

v∗(x0) = sup
{xt+1}

∞∑
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ (xt) , ∀t ≥ 0

x0 ∈ X is given
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with the corresponding functional equation,

v (x) = sup
y∈Γ(x)

{F (x, y) + βv (y)} , ∀x ∈ X

under the assumption that F is bounded and β is less than one. We will show that we can
fit the single sector growth model into this format. In the single sector growth model that
we talked about last week, we showed that we can write the problem as

v∗(k0) = sup
{xt+1}

∞∑
t=0

βtu (f(kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt), ∀t ≥ 0

k0 is given.

Claim 1. Under relatively mild assumptions (what are they?), u can be expressed as a
continuous and bounded function of k, k′ ∈ X where k ∈ X, a convex subset of R and k′ ∈
Γ(k), where Γ : X → X is a non-empty, compact-valued, and continuous correspondence.

Proof. Question 4 on problem set 2.

Under these assumptions, and the standard assumption that β is less than one, we can apply
the theorems in SLP 4.1 (Principle of Optimality) to show that we can express our sequence
problem as the following functional equation,

v (k) = max
k′∈Γ(k)

{u(f(k)− k′) + βv (k′)} , ∀k ∈ X (1)

Now we will demonstrate that the functional equation has a unique solution v and establish
some useful properties of v. First, define the operator T to be

(Tw) (k) = max
k′∈Γ(k)

{u(f(k)− k′) + βw (k′)} (2)

such that equation (1) can be written as Tv = v. We have already shown that u is
bounded. Thus, if w is bounded, then Tw will also be bounded. Therefore we can es-
tablish T : B(X)→ B(X) where B(X) is the space of bounded functions. In order to show
that T is a contraction, we will apply Blackwell’s Sufficient Conditions.
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Theorem 2 (Blackwell’s Sufficient Conditions). Let X ⊂ Rl, and let B(X) be a space of
bounded functions f : X → R with the sup norm. Let T : B(X) → B(X) be an operator
satisfying

a (Monotonicity) f, g ∈ B(X) and f(x) ≤ g(x) for all x ∈ X implies (Tf)(x) ≤ (Tg)(x) for
all x ∈ X.

b (Discounting) There exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf)(x) + βa, all f ∈ B(X), a ≥ 0, x ∈ X.

where (f + a)(x) = f(x) + a. Then T is a contraction with modulus β.

Claim 3. The operator T : B(X)→ B(X), as defined in (2) is a contraction.

Proof. We will show that T is a contraction by showing that it satisfies Blackwell’s Sufficient
conditions. Note that we have the first part of the hypothesis, T : B(X)→ B(X). We need
to show that it satisfies monotonicity and discounting.

(Mono) Consider v, w ∈ B(X) with v(k) ≥ w(k) ∀k ∈ X.

(Tv)(k) = max
k′∈Γ(k)

u(f(k)− k′) + βv (k′)

(Tv)(k) ≥ max
k′∈Γ(k)

u(f(k)− k′) + βw (k′)

(Tv)(k) ≥ (Tw)(k) ∀k ∈ X

(Disc)

T (w + a)(k) = max
k′∈Γ(k)

u(f(k)− k′) + β(w (k′) + a)

= max
k′∈Γ(k)

u(f(k)− k′) + βw (k′) + βa

= T (w)(k) + βa

Since T is a contraction, we know that there exists a unique fixed point v such that Tv = v,
i.e. equation (1) is satisfied.

Proposition 4 (Corollary to the Contraction Mapping Theorem).
Let (S,ρ) be a complete metric space, and let T : S → S be a contraction mapping with a
fixed point v ∈ S. If S ′ is a closed subset of S, and T (S ′) ⊆ S ′, then v ∈ S ′. If in addition,
T (S ′) ⊆ S” ⊆ S ′, then v ∈ S”.
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Proof. Take any initial value (in our example a function) v0 ∈ S, then {T nv0} is a sequence
that converges to v. (This fact is demonstrated in the proof of the contraction mapping
theorem). If for an arbitrary v0 ∈ S ′, Tv0 ∈ S ′, then {T nv0} is a sequence entirely contained
in the set S ′. If S ′ is closed, then it must be that v, the limit of the sequence, is also in S ′.

Additionally, if for any arbitrary v0 ∈ S ′, Tv0 ∈ S” ⊆ S ′, then it must be true that v ∈ S”.
To see this, simply note that we have already shown that v ∈ S ′. By our hypothesis, Tv ∈ S”
and we know that Tv = v.

We will use the logic of this corollary to show several important properties. For convenience,
I will define ū(k, k′) ≡ u(f(k)− k′).

Claim 5. Under the assumptions made so far, v is a continuous function and the policy
correspondence G is non-empty and upper hemi-continuous.

Proof. Problem 4 on problem set 2.

Claim 6. If ū(·, k′) is strictly increasing in k and Γ has the property that for k1 > k2,
Γ(k1) ⊇ Γ(k2) (what conditions guarantee this?), then v is strictly increasing.

Proof. Consider our contraction operator as defined in (2),

(Tw) (k) = max
k′∈Γ(k)

{ū(k, k′) + βw (k′)}

Let C
′
(X) define the set of weakly increasing functions and let C

′′
(X) describe the set of

strictly increasing function. Note that B(X) ⊇ C
′
(X) ⊇ C

′′
(X), and that C

′
(X) is a closed

set. From the Corollary to the contraction mapping theorem, we only need to show that the
set of weakly increasing functions maps into the set of strictly increasing functions.

Let w be an arbitrary weakly increasing function of k, and consider k1, k2 such that k1 > k2.

(Tw)(k1) = max
k′∈Γ(k1)

ū(k1, k
′) + βw (k′)

> max
k′∈Γ(k1)

ū(k2, k
′) + βw (k′)

> max
k′∈Γ(k2)

ū(k2, k
′) + βw (k′)

(Tw)(k1) > (Tw)(k2)

We started with an arbitrary weakly increasing function and showed that Tw is a strictly
increasing function. Therefore, we have proven that the fixed point v must be strictly
increasing.
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In this next proof we will need ū to be strictly concave: for any two points, (k1, k
′
1) and

(k2, k
′
2) where ki ∈ Γ(k′i),

ū(λk1 + (1− λ)k2, λk
′
1 + (1− λ)k′2) > λū(k1, k

′
1) + (1− λ)ū(k2, k

′
2)

or

u(f(λk1 + (1− λ)k2)− (λk′1 + (1− λ)k′2)) > λu(f(k1)− k′1) + (1− λ)u(f(k2)− k′2).

We also need Γ to have a convex graph: for any two points, (k1, k
′
1), (k2, k

′
2) where k′i ∈

Γ(ki),

λk′1 + (1− λ)k′2 ∈ Γ(λk1 + (1− λ)k2)

What conditions do we have to assume on u and f in order for these properties to be
satisfied?
Claim 7. If ū(·, k′) is strictly concave and Γ has a convex graph, then v is strictly concave.

Proof. Consider our contraction operator as defined in (2),

(Tw) (k) = max
k′∈Γ(k)

{ū(k, k′) + βw (k′)}

Let C
′
(X) define the set of weakly concave functions and let C

′′
(X) describe the set of

strictly concave function. Note that B(X) ⊇ C
′
(X) ⊇ C

′′
(X), and that C

′
(X) is a closed

set. From the Corollary to the contraction mapping theorem, we only need to show that the
set of weakly concave functions maps into the set of strictly concave functions.

Let w be an arbitrary concave function, and consider some k1, k2 with k1 6= k2 and λ ∈ (0, 1).
First, I will define k′1 ∈ Γ(k1) and k′2 ∈ Γ(k2) as the optimal choices given each starting level
of capital.

(Tw)(λk1 + (1− λ)k2) = max
k′∈Γ(λk1+(1−λ)k2)

ū(λk1 + (1− λ)k2, k
′) + βw (k′)

≥ ū(λk1 + (1− λ)k2, λk
′
1 + (1− λ)k′2) + βw (λk′1 + (1− λ)k′2)

> λū(k1, k
′
1) + (1− λ)ū(k2, k

′
2) + β[λw(k′1) + (1− λ)w(k′2)]

(Tw)(λk1 + (1− λ)k2) > λ(Tw)(k1) + (1− λ)(Tw)(k2)

We started with an arbitrary weakly increasing function and showed that Tw is a strictly
increasing function. Therefore, we have proven that the fixed point v must be strictly
increasing.
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2 Summarizing Properties of the Value Function

The following is a helpful table assembled by Monica Tran Xuan to summarize the assump-
tions and theorems in section 4.2 of SLP. We start with assumptions 4.3 and 4.4 so that
there is a unique solution v to the (FE).

Assumptions Theorems Properties of v Properties of G

A4.5: F (·, y) is strictly increasing
Thm 4.7 v is strictly inceasing

A4.6: Γ is monotone. i.e.
x ≤ x′ ⇒ Γ(x) ⊆ Γ(x′)
A4.7: F is concave in (x, y)

Thm 4.8 v is strictly concave
G is
single-valued,
continuous
function

A4.8: Γ is convex, i.e.
∀λ ∈ [0, 1], y ∈ Γ(x), y′ ∈ Γ(x′)
⇒ λy + (1− λ)y′ ∈ Γ(λx+ (1− λ)x′)
A4.7: F is concave in (x, y)

Thm 4.11
v is continuously
differentiable at
x0 ∈ int(X)

A4.8: Γ is convex
A4.9: F is continuosly differentiable on
the interior of A (w.r.t. x)
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