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1 Pareto Optimality and the Welfare Theorems

In this section, I present the following definitions and theorems for general production econ-
omy similar to the one presented in week 1.

Definition 1.1. An allocation z =
{(
zH,i
)
i∈I , z

F
}

is feasible if ∀i ∈ I, zH,i ∈ X i , zF ∈ Y
, and z satisfies markets clearance.
Definition 1.2. An allocation z is Pareto Optimal if it is feasible, and there exists no other
feasible allocation ẑ such that

∀i ∈ I, U i
({

(ĉit, l̂
i
t)
}∞
t=0

)
≥ U i

({
(cit, l

i
t)
}∞
t=0

)
∃j ∈ I : U j

({
(ĉjt , l̂

j
t )
}∞
t=0

)
> U j

({
(cjt , l

j
t )
}∞
t=0

)
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Theorem 1.3. First Welfare Theorem

Let E be a production economy such that ∀i, ki0 > 0 and U i is strictly increasing. If (z, p)

is an Arrow-Debreu (competitive) equilibrium (where z =
{(
zH,i
)
i∈I , z

F
}

), then z is Pareto

optimal.

Proof. Suppose, by contradiction, that z is not Pareto optimal. Then by definition, there
exists another feasible allocation ẑ such that

∀i ∈ I, U i
({

(ĉit, l̂
i
t)
}∞
t=0

)
≥ U i

({
(cit, l

i
t)
}∞
t=0

)
∃j ∈ I : U j

({
(ĉjt , l̂

j
t )
}∞
t=0

)
> U j

({
(cjt , l

j
t )
}∞
t=0

)
Claim-1

∑∞
t=0 pt

[
ĉjt + x̂jt

]
>
∑∞

t=0

[
wtn̂

j
t + rtk̂

j
t

]
+ πj

Suppose not, i.e.
∑∞

t=0 pt
[
ĉjt + x̂jt

]
≤
∑∞

t=0

[
wtn̂

j
t + rtk̂

j
t

]
+ πj

Then we have that ẑH,j satisfies budget constraint and yields higher utility, which contradicts
zH,j being part of the Arrow-Debreu equilibrium.

Claim-2 ∀i,
∑∞

t=0 pt [ĉit + x̂it] ≥
∑∞

t=0

[
wtn̂

i
t + rtk̂

i
t

]
+ πi

Suppose not, i.e.
∑∞

t=0 pt [ĉit + x̂it] <
∑∞

t=0

[
wtn̂

i
t + rtk̂

i
t

]
+ πi

Then there exists ε > 0 such that
∑∞

t=0 pt [ĉit + x̂it] + ε ≤
∑∞

t=0

[
wtn̂

i
t + rtk̂

i
t

]
+ πi

Define a new allocation for HH i , z̃H,i = {(c̃it, l̂it, n̂it, k̂it, x̂it)}∞t=0 such that c̃i0 = ĉit + ε
p0

and

∀t ≥ 1, c̃it = ĉit

Then
∑∞

t=0 pt [c̃it + x̃it] =
∑∞

t=0 pt [ĉit + x̂it] + ε ≤
∑∞

t=0

[
wtn̂

i
t + rtk̂

i
t

]
+ πi

Then we have that z̃H,i satisfies the same budget constraint as ẑH,i. However, since U i is
strictly increasing,

U i
({

(c̃it, l̃
i
t)
}∞
t=0

)
> U i

({
(ĉit, l̂

i
t)
}∞
t=0

)
≥ U i

({
(cit, l

i
t)
}∞
t=0

)
which contradicts zH,j being part of the Arrow-Debreu equilibrium.

Summing across all HHs, we have

∑
i∈I

[
∞∑
t=0

pt
[
ĉit + x̂it

]]
>
∑
i∈I

[
∞∑
t=0

[
wtn̂

i
t + rtk̂

i
t

]]
+
∑
i∈I

πi
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Equivalently,

∞∑
t=0

pt

[∑
i∈I

ĉit +
∑
i∈I

x̂it

]
>
∞∑
t=0

[
wt
∑
i∈I

n̂it + rt
∑
i∈I

k̂it

]
+
∑
i∈I

πi

Note that

∑
i∈I

πi =
∑
i∈I

θi
∞∑
t=0

[
pty

f
t − wtn

f
t − rtk

f
t

]
=
∞∑
t=0

[
pty

f
t − wtn

f
t − rtk

f
t

]
∞∑
t=0

[
pty

f
t − wtn

f
t − rtk

f
t

]
≥

∞∑
t=0

[
ptŷ

f
t − wtn̂

f
t − rtk̂

f
t

]
Subtituting in the profit condition and the firm’s problem, we have

∞∑
t=0

pt

[∑
i∈I

ĉit +
∑
i∈I

x̂it

]
>
∞∑
t=0

[
wtn̂

f
t + rtk̂

f
t

]
+
∞∑
t=0

[
pty

f
t − wtn

f
t − rtk

f
t

]
≥

∞∑
t=0

[
wtn̂

f
t + rtk̂

f
t

]
+
∞∑
t=0

[
ptŷ

f
t − wtn̂

f
t − rtk̂

f
t

]
=
∞∑
t=0

ptŷ
f
t

Thus, we have

∞∑
t=0

pt

[∑
i∈I

ĉit +
∑
i∈I

x̂it

]
>
∞∑
t=0

ptŷ
f
t

Note that by contradiction hypothesis, ẑ is feasible so ∀t

∑
i∈I

ĉit +
∑
i∈I

x̂it ≤ yft

Multiplying both sides by pt and summing across of time, we have

∞∑
t=0

pt

[∑
i∈I

ĉit +
∑
i∈I

x̂it

]
≤

∞∑
t=0

pty
f
t

which is a contradiction.
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Theorem 1.4. Second Welfare Theorem

Let E be a production economy such that ∀i, ki0 > 0 and ∀i, U i is continuous, strictly in-

creasing, and concave. F is continuous, increasing, and concave. If z =
{(
zH,i
)
i∈I , z

F
}

is

a Pareto optimal allocation, then there exists a price system p and reallocation endownments(
ki
′
0 , θ

i′
)

such that (z, p) is an Arrow-Debreu equilibrium of E ′, the economy defined by new
endowments.
Theorem 1.5. Second Welfare Theorem (Version with Transfers)

Let E be a production economy such that ∀i, ki0 > 0 and ∀i, U i is continuous, strictly in-

creasing, and concave. F is continuous, increasing, and concave. If z =
{(
zH,i
)
i∈I , z

F
}

is a

Pareto optimal allocation, then there exists a price system p and transfers (T i)i∈I such that
(z, p) is an Arrow-Debreu equilibrium with these transfers.

2 Environment

• Discrete time t = 0, 1, 2, . . .

• Production economy with one commodity

• HHs:

– One infinitely lived, representative consumer

– Utility function: U ({ct}∞t=0) =
∑∞

t=0 β
tu(ct)

– The Utility function is strictly increasing, differentiable, strictly concave, and
satisfies the Inada conditions.

– Consumer invests xt

– The Consumer supplies 1 unit of labor inelastically in every period

– Consumer has capital stock kt which fully depreciates every period

– Law of Motion of Capital: kt+1 ≤ xt

– Consumer begins with initial capital k0

– Consumer rents out capital services to firms, receiving capital income.

– Consumers own a share of firm profits, but profits will be zero.

• Firms: only 1 sector producing goods that can either be consumed or invested

– One representative firm.

– Final good is produced by: yft = F (kft , n
f
t )
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– F is increasing, strictly concave, and homogeneous of degree one.

– Let f(kft ) = F (kft , 1)
Definition 2.1. An Arrow-Debreu Equilibrium is

• an allocation for the HH: zH = {(ct, kt, xt)}∞t=0

• an allocation for the firm: zF = {(yft , k
f
t , n

f
t )}∞t=0

• a system of prices: p = {(pt, wt, rt)}∞t=0

such that

(HH) Given p, zH solves

max
{(ct,kt,xt)}∞t=0

∞∑
t=0

βtu(ct)

s.t.
∞∑
t=0

pt [ct + xt] ≤
∞∑
t=0

[wt + rtkt]

kt+1 ≤ xt, ∀t
ct, kt+1 ≥ 0, ∀t

k0 > 0, given

(Firm) Given p, zF solves

max
{(yft ,k

f
t ,n

f
t )}∞t=0

∞∑
t=0

[
pty

f
t − wtn

f
t − rtk

f
t

]
s.t.

yft ≤ F (kft , n
f
t ), ∀t

kft , n
f
t , y

f
t ≥ 0,∀t

(Mkt) For all t,

(Goods Market)ct + xt = yft ≤ F (kft , n
f
t )

(Labor Market)1 = nft

(Capital Market)kt = kft
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3 Transversality Condition

The transversality condition is part of the traditional method to characterize the equilibrium
allocation. There are multiple ways to interpret this condition. One way is to of it as an
optimality condition, i.e. Euler equation (deriving from FOCs) and transversality conditions
determine the optimal equilibrium path.

From the households first-order conditions, we can derive the Euler equation which relates
the intertemporal marginal rate of substitution of consumption

u′(ct)

u′(ct+1)
= G(kt, kt+1)

Moreover, we can use resource constraint to rewrite this equation into the system of second-
order difference equations in (kt, kt+1, kt+2).

u′(f(kt)− kt+1)

u′(f(kt+1)− kt+2)
= G(kt, kt+1)

To solve the system, we need two boundary conditions. The first condition will be the initial
condition ki0 > 0 given, and the second condition will be the transversality condition.

Finite Time: Suppose that consumers only live up to period T . What will kT+1 be in
equilibrium. It must be zero, as the consumer has no use for capital after death.

Infinitely Lived Agents: What should we expect kT+1 to be as T →∞? Naturally, we should
expect that it remain at or near zero. A basic formulation of the transversality condition is
limt→∞ ptkt+1 = 0 where pt is the Arrow-Debreu prices on consumption. This means that at
the limit, capital in the following period has no value relative to time 0 consumption. You
can rewrite this equation in terms of kt and kt+1.

Question. What are the transversality conditions the sequential markets setting? Hint:
there is one for kt+1 and one for bt+1.

4 Social Planner’s Problem

4.1 An Environment with n Consumers

The Welfare Theorems establish some sense of equivalence between the competitive equi-
librium allocations and Pareto optimal allocations. To find any Pareto optimal allocation,
we can solve the problem of a social planner who maximizes weighted sum of consumers’
utilities subject to resource constraints:
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max
∑
i∈I

αiU i
({(

cit, l
i
t

)}∞
t=0

)
s.t.∑

i∈I

[
cit + xit

]
= F (

∑
i∈I

kit,
∑
i∈I

nit)

kit+1 ≤ xit + (1− δ)kit, ∀t
lit + nit ≤ 1, ∀t

cit, k
i
t+1, l

i
t, n

i
t ≥ 0, ∀t

ki0 > 0 given

Using methods such as the Negishi Method, we can then find the pareto optimal allocations
that correspond to competitive equilibria.

4.2 In Our Representative Agent Environment

In the environment characterized in section 2, the social planner’s problem is equivalent to
the competitive equilibrium. This can be shown explicitly by characterizing equilibria in each
setting with first order conditions, resource constraints, and the transversality condition. The
planner’s problem simplifies to

max
ct,kt+1

∞∑
t=0

βtu(ct)

s.t.

ct + kt+1 = f(kt)

ct, kt+1 ≥ 0, ∀t
k0 > 0 given

This is a traditional neoclassical growth model.
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5 Introduction to Dynamic Programming

5.1 The Finite Horizon Case

Suppose the representative agent in the neoclassical growth model that we have developed
lives only T periods:

max
ct,kt+1

T∑
t=0

βtu (ct)

s.t. ct + kt+1 ≤ f (kt) ,

ct, kt+1 ≥ 0, t = 0, 1, . . . , T,

given k0.

Under the assumptions made in section 2 the Euler equations, the transversality condition,
and the resource constraints are sufficient to characterize the optimal allocations. Even so,
it is not trivial to solve the problem analytically. We can simplify our task if we can write
the problem recursively.

Question. How do we write this problem recursively?

Let’s work backwards from the final period. Given the fact that the social planner has
already chosen the capital stock in T to be kT , we can find the allocation in the final period
of the agents life by maximizing the one period problem:

v∗T (kT ) = max
cT ,kT+1

u (cT )

s.t. cT + kT+1 ≤ f (kT ) ,

cT , kT+1 ≥ 0.

Note that in micro theory, v(·) is the indirect utility of the agent. As we argued earlier, the
optimal choice for the planner is to set kT+1 = 0. Then, we will have:

v∗T (kT ) = u (f (kT )) .

What about the prior period? Given the fact that optimal choice of capital stock in T is to
set kT+1 = 0, the value of the planning problem in T − 1 becomes:

v∗T−1 (kT−1) = max
cT−1,kT

u (cT−1) + βu (f (kT ))

s.t. cT−1 + kT ≤ f (kT−1) ,

cT−1, kT ≥ 0.
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If we substitute for u (f (kT )), we can write this as:

v∗T−1 (kT−1) = max
cT−1,kT

u (cT−1) + βv∗T (kT )

s.t. cT−1 + kT ≤ f (kT−1) ,

cT−1, kT ≥ 0.

As long as u has a nice functional form, we could find the solution to this problem with pen
and paper.

Let us go one step further back; the value of the planner becomes:

v∗T−2 (kT−2) = max
cT−2,cT−1,kT−1,kT

u (cT−2) + βu (cT−1) + β2u (f (kT ))

s.t. cT−2 + kT−1 ≤ f (kT−2) ,

cT−1 + kT ≤ f (kT−1) ,

cT−2, kT−1, cT−1, kT ≥ 0.

Since we already solved for v∗T−1 (kT−1), we can use the same trick as before and simplify to
a problem which has an attainable analytical solution:

v∗T−2 (kT−2) = max
cT−2,kT−1

u (cT−2) + βv∗T−1 (kT−1)

s.t. cT−2 + kT−1 ≤ f (kT−2) ,

cT−2, kT−1 ≥ 0.

Therefore, we may conclude that, at any period 0 ≤ t ≤ T , the value of the planning problem
can be written as:

v∗t (kt) = max
ct,kt+1

u (ct) + βv∗t+1 (kt+1)

s.t. ct + kt+1 ≤ f (kt) ,

ct, kt+1 ≥ 0.

Given a value function v∗t+1 (·), solving this problem to find v∗t (·) is straightforward, and we
know the solution for v∗T (·). Therefore, through backward induction, we can solve for the
whole sequence of consumption, capital, and indirect utility.
Question. What is the interpretation of this problem?

Suppose I ensure you there is a social planner that will act optimally tomorrow, based on
whatever capital stock you provide to her. And you know that you will receive utility from
that capital stock according to v∗t+1 (·). Now, the only think you have to decide is what
portion of your production today you will consume and what portion you would invest as
capital for tomorrow.
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Question. Will v∗t (·) and v∗t+1 (·) be the same in general?

A: No! One simple reason for this is that, at date t, T − t periods of agent’s life is remaining,
while at t+ 1, T − t− 1!

The first order conditions also provide solutions for the optimal values of consumption and
investment as functions of kt. Let us denote these functions by g∗k,t (·) and g∗c,t (·), and call
them policy functions ; since these give the optimal policy for the planner to take, given the
current situation in the economy, which is given by the capital stock. Therefore:

c∗t = g∗c,t (kt) ,

k∗t+1 = g∗k,t (kt) .

5.2 Bellman’s Equation

Consider the recursive formula for the social planner’s problem for our infinitely lived agent.
Because we no longer have a finite number of periods, it would be convenient for v∗t to be
the same ∀t. The following functional equation is typically referred to as a bellman equation
and characterizes a typical dynamic programming problem.

v∗ (kt) = max
ct,kt+1

{u (ct) + βv∗ (kt+1)}

s.t. ct + kt+1 ≤ f (kt) ,

ct, kt+1 ≥ 0.

Under certain conditions, which you will explore on the next problem set, we can apply
the contraction mapping theorem to guarantee that such a v∗ exists and we can prove the
solution to the bellman equation is that same as the solution to the sequential formulation
of the planner’s problem (SLP Section 4.1).

6 Guess and Verify

Given the Bellman’s Equation, in some cases, we can solve for the optimal path analytically
by guess and verify.

Step 1: Set up the Bellman Equation

Step 2: Guess a functional form for V (·)

Step 3: Now that the Bellman Equation is fully specified, solve for the optimal policy func-
tions: gc(·), gk(·), etc
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Step 4: Substitute the solved policy functions back into Bellman Equation to solve for the
value function, V (·)

Step 5: If you can solve for the parameters of the function you guessed, then you have verified
your guess.

11


