Macroeconomic Theory (ECON 8105)

Larry Jones

Fall 2016

Problem Set 3

Due Date: October 11th, 2016

Please hand in one physical copy per group and write the names of your group members on the first page.

Question 1: Policy Function-Discount Factor (Prelim SP2008, Q. II.1)

Here you are asked to show that the policy function of a standard growth model is increasing in the discount factor. Let T_{β} be the operator of mapping the set of weakly concave, bounded, continuous functions $f: X \to \mathbb{R}$ into itself: $T_{\beta}: C'(X) \to C'(X)$.

$$T_{\beta}(v)(k) = \max_{k' \in \Gamma(k)} \left\{ u \left(f(k) - k' \right) + \beta v(k') \right\}$$

Fix $\hat{\beta} > \beta$. Let $T_{\hat{\beta}}$ be the operator using $\hat{\beta}$.

a. Argue that there is a unique fixed point for each operator.

Let $v^*(\cdot; \beta)$ and $v^*(\cdot; \hat{\beta})$ be the fixed point for the operator T_{β} and $T_{\hat{\beta}}$ respectively. Assume that both functions are differentiable.

Also, let $v_k(\cdot; \hat{\beta})$ be the k-th iteration using the operator $T_{\hat{\beta}}$ and $g_k(\cdot; \hat{\beta})$ be the corresponding policy function.

- b. Show the optimality condition that $g^*(k;\beta)$ satisfies.
- c. Now, use $v^*(\cdot; \beta)$ as the initial guess for the operator $T_{\hat{\beta}}$. Show the opimality condition that $q_1(k; \hat{\beta})$ satisfies.
- d. Show that $g_1(k; \hat{\beta}) > g^*(k; \beta)$.
- e. Show that $v_1'(k; \hat{\beta}) > v^{*'}(k; \beta)$. (Hint: Think of the envelope condition.)
- f. Show that $g_n(k; \hat{\beta}) > g^*(k; \beta), \forall n$

Question 2: Exogenous Growth (Prelim FA2008, Q. I.1)

Consider the Planner's Problem version of the single sector growth model with labor augmenting technological change:

$$\max \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, l_{t}\right)$$

$$s.t. \quad c_{t} + x_{t} \leq F(k_{t}, A_{t}n_{t})$$

$$k_{t+1} \leq x_{t} + (1 - \delta)k_{t}$$

$$l_{t} + n_{t} \leq 1$$

$$c_{t}, k_{t}, l_{t}, n_{t} \geq 0$$

$$k_{0} > 0 \text{ given}$$

where $A_t = \gamma^t A_0$.

- a. Give a set of conditions under which the solution to this problem can be obtained by solving a stationary dynamic programming problem.
- b. (Correction 10/5/2016): Explicitly add enough conditions to your answer in (a) for you to show that $\lim_{t\to\infty} \frac{k_{t+1}}{k_t} = \gamma$, and actually show it.

Question 3: TDCE (Prelim SP2006, Q. I.1)

- a. Define a general Taxed Distorted Competitive Equilibrium for the one-sector growth model with multiple households and multiple firms.
- b. Show that if at an allocation and price system satisfy that:
 - The feasibility constraint for each firm holds with equality
 - The budget constraint for each household holds with equality
 - All markets for all goods clear with equality

Then the Government Budget constraint is automatically satisfied. Make sure you clearly state any assumptions you need to make.

Question 4: Equivalent Taxes (Prelim SP2005, Q. I.3)

Consider a dynamic, representative agent, one sector economy in which the government must finance a given stream of expenditures, $\{g_t\}$, using only consumption and labor income taxes, τ_{ct} and τ_{nt} .

- a. Define a Tax Distorted Competitive Equilibrium (TDCE) for this setting.
- b. Show that any allocation resulting in an equilibrium of this sort can also be realized as an equilibrium in a world where the government must finance the same sequence of expenditures $\{g_t\}$ but can only use labor and capital income taxes, $\hat{\tau}_{kt}$ and $\hat{\tau}_{nt}$.
- c. Is $\hat{\tau}_{nt} = \tau_{nt}$? That is, for a given sequence of government expenditures, and a given equilibrium allocation with that sequence in the two types of tax systems described above, are the two required time series of labor income taxes the same?

Question 5: Capital Taxation with Lump Sum Rebates (Prelim FA2013, Q. II)

Consider an infinite horizon, representative consumer, economy in which preferences are given by:

$$\frac{1}{1-\beta} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

where c_t is consumption in period t. Each household has an initial stock of capital given by k_0 and is subject to the law of motion for capital $k_{t+1} \leq x_t$, where x_t is investment by household in period t. Assume that labor is inelastically supplied with 1 unit each period. Output is given by

$$c_t + x_t \le F(k_t, l_t)$$

where F satisfies all of the normal conditions.

Assume that government taxes income earned on capital at rate τ in every period and that all revenue generated in this way is lump sum rebated to the households. There are no other taxes, and no other government spending.

- a. Carefully define a Tax Distorted Competitive Equilibrium for this environment, given the fiscal policy.
- b. Show that the allocation that results from the TDCE you defined in Part (a) can also be obtained by solving a Planning Problem with a representative consumer. Clearly and carefully lay out what this Planning Problem is, and show that its solution is the TDCE allocation from Part (a).

Now assume that τ is a tax on all income earned by the consumer each period and that government revenue is used to purchase government consumption. Thus, output is given by,

$$c_t + x_t + g_t \le F(k_t, l_t)$$

- c. Define a Tax Distorted Competitive Equilibrium for this environment, given the fiscal policy.
- d. Show that the allocation that results from the TDCE you defined in Part (c) can also be obtained by solving a Planning Problem with a representative consumer. Clearly and carefully lay out what this Planning Problem is, and show that its solution is the TDCE allocation from Part (c).