Macroeconomic Theory (ECON 8105)

Larry Jones

Fall 2016

Problem Set 2

Due Date: September 29th, 2016

Please hand in one physical copy per group and write the names of your group members on the first page.

Question 1: Math Review

- a Define a Metric Space. Solve Exercise 3.3(a,b,c) in SLP.
- b Define a Normed Vector Space. Solve SLP 3.4 (a,d,e,f).
- c Define upper hemi-continuity (uhc) and lower hemi-continuity (lhc).
- d Prove that a function is continuous if and only if it is a (single-valued) UHC correspondence.
- e Prove that a function is continuous if and only if it is a (single-valued) LHC correspondence.
- f Solve SLP 3.13

Question 2: Theorem of the Maximum

Consider the feasibility correspondence:

$$\Gamma(k) = \{ k' \in \mathbb{R} | \ 0 \le k' \le \theta k^{\alpha} \}$$

- a What does it mean for $\Gamma(\cdot)$ to be continuous? Prove that $\Gamma(\cdot)$ is continuous.
- b State the Theorem of the Maximum. Now, suppose $f(\cdot)$ is a continuous real valued function. What can be said about $g: \mathbb{R} \Rightarrow \mathbb{R}$ defined as

$$g(k) = \arg \max_{x} f(x)$$

s.t. $x \in \Gamma(k)$.

c Suppose now that $f(\cdot)$ is strictly quasi-concave. What can be said about g?

Question 3: Blackwell's Sufficient Conditions and The Contraction Mapping Theorem Let $X \subset \mathbb{R}^l$ and B(X) be the space of bounded functions, $f: X \to \mathbb{R}$ with the \sup norm.

- 1. State Blackwell's Sufficient Conditions for an operator $T: B(X) \to B(X)$
- 2. Define a contraction. Prove that if T satisfies Blackwells conditions, then T is a contraction.

3. Define a fixed point for T. State and prove the Contraction Mapping Theorem.

Question 4: The One Sector Growth Model

This question aims to help you understand how to apply dynamic programming into characterizing solutions of the standard one-sector neoclassical growth model. It is a methodology that <u>everyone</u> should master. In each step, try to add as few conditions as possible to achieve the desired results.

Consider the following one-sector growth model:

$$v^{*}(k_{0}) = \max_{c_{t}, k_{t+1}, x_{t}, n_{t}, l_{t}} \sum_{t=0}^{\infty} \beta^{t} U(c_{t}, l_{t})$$

$$s.t. \quad c_{t} + x_{t} \leq f(k_{t}, n_{t})$$

$$k_{t+1} \leq x_{t} + (1 - \delta)k_{t}$$

$$l_{t} + n_{t} \leq 1$$

$$c_{t}, k_{t}, l_{t}, n_{t} \geq 0$$

$$k_{0} > 0 \text{ given}$$

- a Write down the conditions on U and f such that this social planner's problem can be written as a dynamic programming problem. Write the functional equation.
- b Write down the conditions on f and δ such that there exists a maximal sustainable level of capital \bar{K} , which will be when the consumer consumes nothing and works as much as possible. What equation does \bar{K} satisfy?
- c Write down the conditions on U, f, δ , and β such that Assumption 4.3 and Assumption 4.4 (SLP, pp. 78) hold. Show that these conditions imply the assumptions.
- d Let v and G be as defined in SLP section 4.2. Prove that, under these conditions, v is a bounded and continuous function. If you use any theorems from chapter 4 of SLP, you must prove them in your own words.
- e Write down the extra conditions on U and f such that Assumption 4.5 and Assumption 4.6 (SLP, pp. 80) hold. Show that these conditions imply the assumptions. What can you say about v now? What about G?
- f Write down the extra conditions on U and f such that Assumption 4.7 and Assumption 4.8 (SLP, pp. 80) hold. Show that these conditions imply the assumptions. What can you say about v and G now?
- g Write down the extra conditions on U and f such that Assumption 4.9 (SLP, pp. 84) holds. Show that these conditions imply the assumption. What can you say about v now?

Question 5: Guess and Verify I - Optimal Growth with Leisure

Consider the social planning problem of choosing sequences $\{(c_t, k_t, n_t, l_t)\}_{t=0}^{\infty}$ to solve

$$\max \sum_{t=0}^{\infty} \beta^{t} (\log c_{t} + \gamma \log l_{t})$$
s.t.
$$c_{t} + k_{t+1} \leq \theta k_{t}^{\alpha} n_{t}^{1-\alpha}$$

$$l_{t} + n_{t} \leq 1$$

$$c_{t}, k_{t}, n_{t}, l_{t} \geq 0$$

$$k_{0} \text{ given}$$

where $0 < \alpha < 1$, $0 < \beta < 1$, and $\theta > 0$.

- a Write down the Bellman equation for this problem.
- b Guess that the value function V(k) has the form $a_0 + a_1 \log k$. Find the analytical solution for this value function V(k) and the policy functions $g_c(k)$, $g_k(k)$, $g_l(k)$, $g_n(k)$. (Hint: the policy function for labor is constant.)
- c Define the Arrow-Debreu Equilibrium for this world. Calculate the Arrow-Debreu Equilibrium by using the policy functions found in part (b).
- d Define the Sequential Markets Equilibrium for this world. Calculate the Sequential Markets Equilibrium by using the policy functions found in part (b).
- e Suppose now that there are equal populations of 2 types of consumers, with the same discount factor β . They have different utility functions— $log c_t + \gamma^1 \log l_t$ and $log c_t + \gamma^2 \log l_t$. Does the equilibrium allocation for this new economy solve a dynamic programming problem like that in part (a)? Carefully explain why or why not. If it does solve such a problem, write down the Bellman equation.

Question 6: Homothetic-Homogeneous Problem

Consider the following problem:

$$v(k_0) = \max \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$
s.t.
$$c_t + x_t \le Ak_t$$

$$k_{t+1} \le x_t + (1-\delta)k_t$$

$$c_t, k_t \ge 0$$

$$k_0 \text{ given}$$

- a Characterize the homogeneity properties of the optimal decision rules in initial capital stock, k_0 . Specifically, if the initial condition is ηk_0 instead of k_0 , where $\eta > 0$, how will the optimal time paths for consumption, labor supply, investment, and capital change? Prove your claims.
- b Show that the value function is homogeneous of degree 1σ in the initial capital stock.

Question 7: Guess and Verify II

Consider the following sequence problem:

$$v(k_0) = \max \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t.
$$c_t + k_{t+1} \le Ak_t$$

$$c_t, k_t \ge 0$$

$$k_0 \text{ given}$$

- a Write this problem as a dynamic programming problem.
- b Assue $u(c) = c^{1-\sigma}/(1-\sigma)$. Write down the Bellman equation. Make a guess for the value function and obtain an analytical expression for $v(\cdot)$.
- c Assume $u(c) = -e^{-c}$. Derive $v(\cdot)$.

Question 8: Different Discount Factors (Prelim Spring 2007)

Consider the competitive equilibrium of an Ak economy with two types of agents with equal mass of each. The utility function of type i is given by:

$$\sum_{t=0}^{\infty} \beta_i^t \log c_{i,t}$$

where $0 < \beta_1 < \beta_2 < 1$. Assume that the initial endowments of period 0 capital stock are the same: $k_{1,0} = k_{2,0} > 0$. The aggregate resource contraint is

$$c_t + k_{t+1} \le Ak_t + (1 - \delta)k_t$$

where c_t denotes period t aggregate consumption, k_t the aggregate capital stock, and $0 < \delta < 1$ the depreciate rate.

- a Do the two agent types consume the same amount in period 0? If not, who consumes more? Prove your claims.
- b What is $\lim_{t\to\infty} \frac{c_{1t}}{c_{2t}}$ in equilibrium?